License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2018.21
URN: urn:nbn:de:0030-drops-85235
URL: http://drops.dagstuhl.de/opus/volltexte/2018/8523/
Go to the corresponding LIPIcs Volume Portal


Chillara, Suryajith ; Limaye, Nutan ; Srinivasan, Srikanth

Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications

pdf-format:
LIPIcs-STACS-2018-21.pdf (0.6 MB)


Abstract

The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity theory, as the problem is closely related to the problem of separating various complexity classes within P. In this paper, we study the algebraic formula complexity of multiplying d many 2x2 matrices, denoted IMM_d, and show that the well-known divide-and-conquer algorithm cannot be significantly improved at any depth, as long as the formulas are multilinear. Formally, for each depth Delta <= log d, we show that any product-depth Delta multilinear formula for IMM_d must have size exp(Omega(Delta d^{1/Delta})). It also follows from this that any multilinear circuit of product-depth Delta for the same polynomial of the above form must have a size of exp(Omega(d^{1/Delta})). In particular, any polynomial-sized multilinear formula for IMM_d must have depth Omega(log d), and any polynomial-sized multilinear circuit for IMM_d must have depth Omega(log d/log log d). Both these bounds are tight up to constant factors. Our lower bound has the following consequences for multilinear formula complexity. Depth-reduction: A well-known result of Brent (JACM 1974) implies that any formula of size s can be converted to one of size s^{O(1)} and depth O(log s); further, this reduction continues to hold for multilinear formulas. On the other hand, our lower bound implies that any depth-reduction in the multilinear setting cannot reduce the depth to o(log s) without a superpolynomial blow-up in size. Separations from general formulas: Shpilka and Yehudayoff (FnTTCS 2010) asked whether general formulas can be more efficient than multilinear formulas for computing multilinear polynomials. Our result, along with a non-trivial upper bound for IMM_d implied by a result of Gupta, Kamath, Kayal and Saptharishi (SICOMP 2016), shows that for any size s and product-depth Delta = o(log s), general formulas of size s and product-depth Delta cannot be converted to multilinear formulas of size s^{O(1)} and product-depth Delta, when the underlying field has characteristic zero.

BibTeX - Entry

@InProceedings{chillara_et_al:LIPIcs:2018:8523,
  author =	{Suryajith Chillara and Nutan Limaye and Srikanth Srinivasan},
  title =	{{Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{21:1--21:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Rolf Niedermeier and Brigitte Vall{\'e}e},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/8523},
  URN =		{urn:nbn:de:0030-drops-85235},
  doi =		{10.4230/LIPIcs.STACS.2018.21},
  annote =	{Keywords: Algebraic circuit complexity, Multilinear formulas, Lower Bounds}
}

Keywords: Algebraic circuit complexity, Multilinear formulas, Lower Bounds
Seminar: 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)
Issue Date: 2018
Date of publication: 20.02.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI