DagSemProc.04351.15.pdf
- Filesize: 134 kB
- 8 pages
We explain topological properties of the embedding-based approach to computability on topological spaces. With this approach, he considered a special kind of embedding of a topological space into Plotkin's $T^\omega$, which is the set of infinite sequences of $T = \{0,1,\bot \}$. We show that such an embedding can also be characterized by a dyadic subbase, which is a countable subbase $S = (S_0^0, S_0^1, S_1^0, S_1^1, \ldots)$ such that $S_n^j$ $(n = 0,1,2,\ldots; j = 0,1$ are regular open and $S_n^0$ and $S_n^1$ are exteriors of each other. We survey properties of dyadic subbases which are related to efficiency properties of the representation corresponding to the embedding.
Feedback for Dagstuhl Publishing