Selfish Routing of Splittable Flow with Respect to Maximum Congestion

Author Rainer Feldmann



PDF
Thumbnail PDF

File

DagSemProc.05011.15.pdf
  • Filesize: 262 kB
  • 12 pages

Document Identifiers

Author Details

Rainer Feldmann

Cite As Get BibTex

Rainer Feldmann. Selfish Routing of Splittable Flow with Respect to Maximum Congestion. In Computing and Markets. Dagstuhl Seminar Proceedings, Volume 5011, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005) https://doi.org/10.4230/DagSemProc.05011.15

Abstract

We study the problem of selfishly routing
  splittable traffic with respect to maximum congestion through a shared
  network.
  Our model naturally combines features of the two best studied 
  models in the context of selfish routing: The KP-model \cite{KP99} and the 
  Wardrop-model \cite{War52}.

  We are given a network with source nodes $s_i$, sink
  nodes $t_i$, $1 \leq i \leq k$, $m$ edges, 
  and a latency function for each edge. Traffics of rate 
  $r_i$ are destined from $s_i$ to $t_i$. 
  Traffics are splittable and each piece of traffic tries to route in
  such a way that it minimizes its private latency.
  In the absence of a central regulation, Nash Equilibria represent
  stable states of such a system. In a Nash Equilibrium, no
  piece of traffic can decrease its private latency by 
  unilaterally changing its route. The increased social cost due to
  the lack of central regulation is defined in terms of the
  coordination ratio, i.e. the worst
  possible ratio of the social cost of a traffic flow at Nash
  Equilibrium and the social cost of a global optimal traffic flow.

  In this paper, 
  we show that in the above model pure Nash Equilibria always exist.
  Then, we analyze the coordination ratio of single-commodity networks with 
  linear latency functions.
  Our main result is a tight upper bound of $\frac{4}{3} m$, where $m$
  is the number of edges of the network, for the coordination ratio of
  single-commodity networks with linear latency functions. 
  On our way to our main result we analyze the coordination ratio of 
  single-hop networks and show a tight upper bound of 
  $m+\Theta(\sqrt{m})$. A more sophisticated analysis yields an upper
  bound of $\frac{4}{3}m$ for the coordination ratio of multi-hop networks,
  which is then used to derive the main result for arbitrary 
  single-commodity linear networks.

Subject Classification

Keywords
  • selfish routing
  • coordination ratio

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail