Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm

Authors Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guidouca Schaefer, Tjark Vredeveld



PDF
Thumbnail PDF

Files

DagSemProc.05031.7.pdf
  • Filesize: 427 kB
  • 35 pages

Document Identifiers

Author Details

Luca Becchetti
Stefano Leonardi
Alberto Marchetti-Spaccamela
Guidouca Schaefer
Tjark Vredeveld

Cite As Get BibTex

Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guidouca Schaefer, and Tjark Vredeveld. Average Case and Smoothed Competitive Analysis of the Multi-Level Feedback Algorithm. In Algorithms for Optimization with Incomplete Information. Dagstuhl Seminar Proceedings, Volume 5031, pp. 5-28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005) https://doi.org/10.4230/DagSemProc.05031.7

Abstract

In this paper we introduce the notion of smoothed competitive analysis of online algorithms. Smoothed analysis has been proposed by Spielman and Teng to explain the behaviour of algorithms that work well in practice while performing very poorly from a worst case analysis point of view. We apply this notion to analyze the Multi-Level Feedback (MLF) algorithm to minimize the total flow time on a sequence of jobs released over time when the processing time of a job is only known at time of completion. The initial processing times are integers in the range $[1,2^K]$. We use a partial bit randomization model, i.e., the initial processing times are smoothed by changing the $k$ least significant bits under a quite general class of probability distributions. We show that MLF admits a smoothed competitive ratio of $O((2^k/\psigma)^3 + (2^k/\psigma)^2 2^{K-k}})$, where $\sigma$ denotes the standard deviation of the distribution. In particular, we obtain a competitive ratio of $O(2^{K-k})$ if $\sigma = \Theta(2^k)$. We also prove an $\Omega(2^{K-k})$ lower bound for any deterministic algorithm that is run on processing times smoothed according to the partial bit randomization model. For various other smoothing models, including the additive symmetric smoothing one, which is a variant of the model used by Spielman and Teng, we give a higher lower bound of $\Omega(2^K)$. A direct consequence of our result is also the first average case analysis of MLF. We show a constant expected ratio of the total flow time of MLF to the optimum under several distributions including the uniform one.

Subject Classification

Keywords
  • Competitive analysis
  • average case analysis
  • smoothed analysis
  • scheduling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail