Given a set of monomials, the {sc Minimum AND-Circuit} problem asks for a circuit that computes these monomials using AND-gates of fan-in two and being of minimum size. We prove that the problem is not polynomial time approximable within a factor of less than $1.0051$ unless $mathsf{P} = mathsf{NP}$, even if the monomials are restricted to be of degree at most three. For the latter case, we devise several efficient approximation algorithms, yielding an approximation ratio of $1.278$. For the general problem, we achieve an approximation ratio of $d-3/2$, where $d$ is the degree of the largest monomial. In addition, we prove that the problem is fixed parameter tractable with the number of monomials as parameter. Finally, we reveal connections between the {sc Minimum AND-Circuit} problem and several problems from different areas.
@InProceedings{arpe_et_al:DagSemProc.06111.4, author = {Arpe, Jan and Manthey, Bodo}, title = {{Approximability of Minimum AND-Circuits}}, booktitle = {Complexity of Boolean Functions}, pages = {1--21}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2006}, volume = {6111}, editor = {Matthias Krause and Pavel Pudl\'{a}k and R\"{u}diger Reischuk and Dieter van Melkebeek}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06111.4}, URN = {urn:nbn:de:0030-drops-6039}, doi = {10.4230/DagSemProc.06111.4}, annote = {Keywords: Optimization problems, approximability, automated circuit design} }
Feedback for Dagstuhl Publishing