Notes on computing minimal approximant bases

Author Arne Storjohann



PDF
Thumbnail PDF

File

DagSemProc.06271.12.pdf
  • Filesize: 143 kB
  • 6 pages

Document Identifiers

Author Details

Arne Storjohann

Cite AsGet BibTex

Arne Storjohann. Notes on computing minimal approximant bases. In Challenges in Symbolic Computation Software. Dagstuhl Seminar Proceedings, Volume 6271, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)
https://doi.org/10.4230/DagSemProc.06271.12

Abstract

We show how to transform the problem of computing solutions to a classical Hermite Pade approximation problem for an input vector of dimension $m imes 1$, arbitrary degree constraints $(n_1,n_2,ldots,n_m)$, and order $N := (n_1 + 1) + cdots + (n_m + 1) - 1$, to that of computing a minimal approximant basis for a matrix of dimension $O(m) imes O(m)$, uniform degree constraint $Theta(N/m)$, and order $Theta(N/m)$.
Keywords
  • Hermite Pade approximation
  • minimal approximant bases

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail