Notes on computing minimal approximant bases

Author Arne Storjohann



PDF
Thumbnail PDF

File

DagSemProc.06271.12.pdf
  • Filesize: 143 kB
  • 6 pages

Document Identifiers

Author Details

Arne Storjohann

Cite As Get BibTex

Arne Storjohann. Notes on computing minimal approximant bases. In Challenges in Symbolic Computation Software. Dagstuhl Seminar Proceedings, Volume 6271, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006) https://doi.org/10.4230/DagSemProc.06271.12

Abstract

We show how to transform the problem of computing solutions 
to a classical Hermite Pade approximation problem for an input
vector of dimension $m 	imes 1$, arbitrary degree constraints
$(n_1,n_2,ldots,n_m)$, and order $N := (n_1 + 1) + cdots +
(n_m + 1) - 1$, to that of computing a minimal approximant
basis for a matrix of dimension $O(m) 	imes O(m)$, uniform
degree constraint $Theta(N/m)$, and order $Theta(N/m)$.

Subject Classification

Keywords
  • Hermite Pade approximation
  • minimal approximant bases

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail