DagSemProc.09441.4.pdf
- Filesize: 246 kB
- 15 pages
$exists$-InvSat is the problem which takes as input a relation $R$ and a finite set $mathcal S$ of relations on the same finite domain $D$, and asks whether $R$ is definable by a conjunctive query over $mathcal S$, i.e., by a formula of the form $exists mathbf{y} varphi(mathbf{x},mathbf{y})$ where $varphi$ is a conjunction of atomic formulas built on the relations in $mathcal S cup {=}$. (These are also called emph{primitive positive formulas}.) The problem is known to be in co-NExpTime, and has been shown to be tractable on the boolean domain. We show that there exists $k>2$ such that $exists$-InvSat is co-NExpTime complete on $k$-element domains, answering a question of Creignou, Kolaitis and Zanuttini.
Feedback for Dagstuhl Publishing