Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH scholarly article en Manurangsi, Pasin; Nakkiran, Preetum; Trevisan, Luca http://www.dagstuhl.de/lipics License
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-66388
URL:

; ;

Near-Optimal UGC-hardness of Approximating Max k-CSP_R

pdf-format:


Abstract

In this paper, we prove an almost-optimal hardness for Max k-CSP_R based on Khot's Unique Games Conjecture (UGC). In Max k-CSP_R, we are given a set of predicates each of which depends on exactly k variables. Each variable can take any value from 1, 2, ..., R. The goal is to find an assignment to variables that maximizes the number of satisfied predicates. Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max k-CSP_R to within factor 2^{O(k log k)}(log R)^{k/2}/R^{k - 1} for any k, R. To the best of our knowledge, this result improves on all the known hardness of approximation results when 3 <= k = o(log R/log log R). In this case, the previous best hardness result was NP-hardness of approximating within a factor O(k/R^{k-2}) by Chan. When k = 2, our result matches the best known UGC-hardness result of Khot, Kindler, Mossel and O'Donnell. In addition, by extending an algorithm for Max 2-CSP_R by Kindler, Kolla and Trevisan, we provide an Omega(log R/R^{k - 1})-approximation algorithm for Max k-CSP_R. This algorithm implies that our inapproximability result is tight up to a factor of 2^{O(k \log k)}(\log R)^{k/2 - 1}. In comparison, when 3 <= k is a constant, the previously known gap was $O(R)$, which is significantly larger than our gap of O(polylog R). Finally, we show that we can replace the Unique Games Conjecture assumption with Khot's d-to-1 Conjecture and still get asymptotically the same hardness of approximation.

BibTeX - Entry

@InProceedings{manurangsi_et_al:LIPIcs:2016:6638,
  author =	{Pasin Manurangsi and Preetum Nakkiran and Luca Trevisan},
  title =	{{Near-Optimal UGC-hardness of Approximating Max k-CSP_R}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{15:1--15:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Klaus Jansen and Claire Mathieu and Jos{\'e} D. P. Rolim and Chris Umans},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/6638},
  URN =		{urn:nbn:de:0030-drops-66388},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.15},
  annote =	{Keywords: inapproximability, unique games conjecture, constraint satisfaction problem, invariance principle}
}

Keywords: inapproximability, unique games conjecture, constraint satisfaction problem, invariance principle
Seminar: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)
Issue date: 2016
Date of publication: 2016


DROPS-Home | Fulltext Search | Imprint Published by LZI