On the Beck-Fiala Conjecture for Random Set Systems

Authors Esther Ezra, Shachar Lovett



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2016.29.pdf
  • Filesize: 458 kB
  • 10 pages

Document Identifiers

Author Details

Esther Ezra
Shachar Lovett

Cite AsGet BibTex

Esther Ezra and Shachar Lovett. On the Beck-Fiala Conjecture for Random Set Systems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 29:1-29:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.29

Abstract

Motivated by the Beck-Fiala conjecture, we study discrepancy bounds for random sparse set systems. Concretely, these are set systems (X,Sigma), where each element x in X lies in t randomly selected sets of Sigma, where t is an integer parameter. We provide new bounds in two regimes of parameters. We show that when |\Sigma| >= |X| the hereditary discrepancy of (X,Sigma) is with high probability O(sqrt{t log t}); and when |X| >> |\Sigma|^t the hereditary discrepancy of (X,Sigma) is with high probability O(1). The first bound combines the Lovasz Local Lemma with a new argument based on partial matchings; the second follows from an analysis of the lattice spanned by sparse vectors.
Keywords
  • Discrepancy theory
  • Beck-Fiala conjecture
  • Random set systems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience series in discrete mathematics and optimization. Wiley, New York, Chichester, Weinheim, 2000. Google Scholar
  2. Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex bodies. Random Structures &Algorithms, 12(4):351-360, 1998. Google Scholar
  3. Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for Komlós conjecture matching Banaszczyk’s bound. arXiv preprint arXiv:1605.02882, 2016. Google Scholar
  4. József Beck and Tibor Fiala. Integer-making theorems. Discrete Applied Mathematics, 3(1):1-8, 1981. Google Scholar
  5. Debe Bednarchak and Martin Helm. A note on the Beck-Fiala theorem. Combinatorica, 17(1):147-149, 1997. Google Scholar
  6. Boris Bukh. An improvement of the Beck-Fiala theorem. arXiv preprint arXiv:1306.6081, 2013. Google Scholar
  7. Bernard Chazelle. The discrepancy method: randomness and complexity. Cambridge University Press, Cambridge, New York, 2000. Google Scholar
  8. Paul Erdös and Rényi Alfréd. On a classical problem of probability theory. Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, 6:215-220, 1961. Google Scholar
  9. Paul Erdös and Laszlo Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and Finite Sets (to Paul Erdös on his 60th birthday), II:609-627, 1975. Google Scholar
  10. Martin Helm. On the Beck-Fiala theorem. Discrete mathematics, 207(1):73-87, 1999. Google Scholar
  11. Jiri Matoušek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science &Business Media, 2009. Google Scholar
  12. Robin A Moser. A constructive proof of the Lovász local lemma. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 343-350. ACM, 2009. Google Scholar
  13. Robin A Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma. Journal of the ACM (JACM), 57(2):11, 2010. Google Scholar
  14. Joel Spencer. Six standard deviations suffice. Transactions of the American Mathematical Society, 289(2):679-706, 1985. Google Scholar
  15. Richard M. Wilson. A diagonal form for the incidence matrices of t-subsets vs. k-subsets. European Journal of Combinatorics, 11(6):609-615, 1990. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail