LIPIcs.ICALP.2017.111.pdf
- Filesize: 497 kB
- 15 pages
We study the problem of enumerating the satisfying valuations of a circuit while bounding the delay, i.e., the time needed to compute each successive valuation. We focus on the class of structured d-DNNF circuits originally introduced in knowledge compilation, a sub-area of artificial intelligence. We propose an algorithm for these circuits that enumerates valuations with linear preprocessing and delay linear in the Hamming weight of each valuation. Moreover, valuations of constant Hamming weight can be enumerated with linear preprocessing and constant delay. Our results yield a framework for efficient enumeration that applies to all problems whose solutions can be compiled to structured d-DNNFs. In particular, we use it to recapture classical results in database theory, for factorized database representations and for MSO evaluation. This gives an independent proof of constant-delay enumeration for MSO formulae with first-order free variables on bounded-treewidth structures.
Feedback for Dagstuhl Publishing