Look-Ahead Approaches for Integrated Planning in Public Transportation

Authors Julius Pätzold, Alexander Schiewe, Philine Schiewe, Anita Schöbel



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2017.17.pdf
  • Filesize: 0.55 MB
  • 16 pages

Document Identifiers

Author Details

Julius Pätzold
Alexander Schiewe
Philine Schiewe
Anita Schöbel

Cite As Get BibTex

Julius Pätzold, Alexander Schiewe, Philine Schiewe, and Anita Schöbel. Look-Ahead Approaches for Integrated Planning in Public Transportation. In 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017). Open Access Series in Informatics (OASIcs), Volume 59, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/OASIcs.ATMOS.2017.17

Abstract

In this paper we deal with three consecutive planning stages in public transportation: Line planning (including line pool generation), timetabling, and vehicle scheduling. These three steps are traditionally performed one after another in a sequential way often leading to high costs in the (last) vehicle scheduling stage. In this paper we propose three different ways to "look ahead", i.e., to include aspects of vehicle scheduling already earlier in the sequential process: an adapted line pool generation algorithm, a new cost structure for line planning, and a reordering of the sequential planning stages. We analyze these enhancements experimentally and show that they can be used to decrease the costs significantly.

Subject Classification

Keywords
  • line pool generation
  • line planning
  • vehicle scheduling
  • integrated planning
  • public transport

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Albert, J. Pätzold, A. Schiewe, P. Schiewe, and A. Schöbel. LinTim - Integrated Optimization in Public Transportation. Homepage. see URL: http://lintim.math.uni-goettingen.de/.
  2. R. Borndörfer, M. Grötschel, and M. Pfetsch. A Column-Generation Approach to Line Planning in Public Transport. Transportation Science, 41:123-132, 2007. Google Scholar
  3. R. Borndörfer, H. Hoppmann, and M. Karbstein. Passenger routing for periodic timetable optimization. Public Transport, 2016. URL: http://dx.doi.org/10.1007/s12469-016-0132-0.
  4. S. Bunte and N. Kliewer. An overview on vehicle scheduling models. Public Transport, 1(4):299-317, 2009. Google Scholar
  5. M. Friedrich, M. Hartl, A. Schiewe, and A. Schöbel. Angebotsplanung im öffentlichen Verkehr - planerische und algorithmische Lösungen. In Heureka'17, 2017. Google Scholar
  6. P. Gattermann, P. Großmann, K. Nachtigall, and A. Schöbel. Integrating Passengers' Routes in Periodic Timetabling: A SAT approach. In Marc Goerigk and Renato Werneck, editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs), pages 1-15, Dagstuhl, Germany, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.3.
  7. P. Gattermann, J. Harbering, and A. Schöbel. Line pool generation. Public Transport, 9(1):7-32, 2017. URL: http://dx.doi.org/10.1007/s12469-016-0127-x.
  8. M. Goerigk, M. Schachtebeck, and A. Schöbel. Evaluating Line Concepts using Travel Times and Robustness: Simulations with the LinTim toolbox. Public Transport, 5(3), 2013. Google Scholar
  9. M. Goerigk and A. Schöbel. Improving the modulo simplex algorithm for large-scale periodic timetabling. Computers and Operations Research, 40(5):1363-1370, 2013. Google Scholar
  10. S. Harrod. A tutorial on fundamental model structures for railway timetable optimization. Surveys in Operations Research and Management Science, 17:85-96, 2012. Google Scholar
  11. C. Liebchen. Periodic Timetable Optimization in Public Transport. dissertation.de - Verlag im Internet, Berlin, 2006. Google Scholar
  12. C. Liebchen and R. Möhring. The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables - and Beyond. In Proceedings of 9th meeting on Computer-Aided Scheduling of Public Transport (CASPT 2004). Springer, 2004. Google Scholar
  13. M. Lübbecke, C. Puchert, P. Schiewe, and A. Schöbel. Detecting structures in network models of integrated traffic planning. Presentation at the Clausthal-Göttingen International Workshop on Simulation Science. Google Scholar
  14. K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. PhD thesis, University of Hildesheim, 1998. Google Scholar
  15. K. Nachtigall and J. Opitz. Solving Periodic Timetable Optimisation Problems by Modulo Simplex Calculations. In Proc. ATMOS, 2008. Google Scholar
  16. J. Pätzold and A. Schöbel. A Matching Approach for Periodic Timetabling. In Marc Goerigk and Renato Werneck, editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs), pages 1-15, Dagstuhl, Germany, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.1.
  17. L. Peeters. Cyclic Railway Timetabling Optimization. PhD thesis, ERIM, Rotterdam School of Management, 2003. Google Scholar
  18. L. Peeters and L. Kroon. A Cycle Based Optimization Model for the Cyclic Railway Timetabling Problem. In S. Voß and J. Daduna, editors, Computer-Aided Transit Scheduling, volume 505 of Lecture Notes in Economics and Mathematical systems, pages 275-296. Springer, 2001. Google Scholar
  19. M. Schmidt. Integrating Routing Decisions in Public Transportation Problems, volume 89 of Optimization and Its Applications. Springer, 2014. Google Scholar
  20. M. Schmidt and A. Schöbel. Timetabling with passenger routing. OR Spectrum, 37:75-97, 2015. Google Scholar
  21. A. Schöbel. Line planning in public transportation: models and methods. OR Spectrum, 34(3):491-510, 2012. Google Scholar
  22. A. Schöbel. An Eigenmodel for Iterative Line Planning, Timetabling and Vehicle Scheduling in Public Transportation. Transportation Research C, 74:348-365, 2017. URL: http://dx.doi.org/10.1016/j.trc.2016.11.018.
  23. P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematic, 2:550-581, 1989. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail