Integrating Passengers' Assignment in Cost-Optimal Line Planning

Authors Markus Friedrich, Maximilian Hartl, Alexander Schiewe, Anita Schöbel



PDF
Thumbnail PDF

File

OASIcs.ATMOS.2017.5.pdf
  • Filesize: 0.69 MB
  • 16 pages

Document Identifiers

Author Details

Markus Friedrich
Maximilian Hartl
Alexander Schiewe
Anita Schöbel

Cite AsGet BibTex

Markus Friedrich, Maximilian Hartl, Alexander Schiewe, and Anita Schöbel. Integrating Passengers' Assignment in Cost-Optimal Line Planning. In 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017). Open Access Series in Informatics (OASIcs), Volume 59, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/OASIcs.ATMOS.2017.5

Abstract

Finding a line plan with corresponding frequencies is an mportant stage of planning a public transport system. A line plan should permit all passengers to travel with an appropriate quality at appropriate costs for the public transport operator. Traditional line planning procedures proceed sequentially: In a first step a traffic assignment allocates passengers to routes in the network, often by means of a shortest path assignment. The resulting traffic loads are used in a second step to determine a cost-optimal line concept. It is well known that travel time of the resulting line concept depends on the traffic assignment. In this paper we investigate the impact of the assignment on the operating costs of the line concept. We show that the traffic assignment has significant influence on the costs even if all passengers are routed on shortest paths. We formulate an integrated model and analyze the error we can make by using the traditional approach and solve it sequentially. We give bounds on the error in special cases. We furthermore investigate and enhance three heuristics for finding an initial passengers’ assignment and compare the resulting line concepts in terms of operating costs and passengers’ travel time. It turns out that the costs of a line concept can be reduced significantly if passengers are not necessarily routed on shortest paths and that it is beneficial for the travel time and the costs to include knowledge on the line pool already in the assignment step.
Keywords
  • Line Planning
  • Integrated Public Transport Planning
  • Integer Programming
  • Passengers' Routes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Albert, J. Pätzold, A. Schiewe, P. Schiewe, and A. Schöbel. LinTim - Integrated Optimization in Public Transportation. Homepage. see URL: http://lintim.math.uni-goettingen.de/.
  2. R. Borndörfer, M. Grötschel, and M. E. Pfetsch. A column generation approach to line planning in public transport. Transportation Science, 41:123-132, 2007. Google Scholar
  3. M. R. Bussieck. Optimal lines in public transport. PhD thesis, Technische Universität Braunschweig, 1998. Google Scholar
  4. M. R. Bussieck, P. Kreuzer, and U. T. Zimmermann. Optimal lines for railway systems. European Journal of Operational Research, 96(1):54-63, 1996. Google Scholar
  5. M. T. Claessens. De kost-lijnvoering. Master’s thesis, University of Amsterdam, 1994. (in Dutch). Google Scholar
  6. M. T. Claessens, N. M. van Dijk, and P. J. Zwaneveld. Cost optimal allocation of rail passenger lines. European Journal on Operational Research, 110:474-489, 1998. Google Scholar
  7. H. Dienst. Linienplanung im spurgeführten Personenverkehr mit Hilfe eines heuristischen Verfahrens. PhD thesis, Technische Universität Braunschweig, 1978. (in German). Google Scholar
  8. M. Friedrich, M. Hartl, A. Schiewe, and A. Schöbel. Angebotsplanung im öffentlichen Verkehr - planerische und algorithmische Lösungen. In Heureka'17, 2017. Google Scholar
  9. M. Friedrich, M. Hartl, A. Schiewe, and A. Schöbel. Integrating passengers' assignment in cost-optimal line planning. Technical Report 2017-5, Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Georg-August Universität Göttingen, 2017. URL: http://num.math.uni-goettingen.de/preprints/files/2017-5.pdf.
  10. P. Gattermann, J. Harbering, and A. Schöbel. Line pool generation. Public Transport, 2016. accepted. Google Scholar
  11. M. Goerigk, M. Schachtebeck, and A. Schöbel. Evaluating line concepts using travel times and robustness: Simulations with the lintim toolbox. Public Transport, 5(3), 2013. Google Scholar
  12. J. Goossens, C. P. M. van Hoesel, and L. G. Kroon. On solving multi-type railway line planning problems. European Journal of Operational Research, 168(2):403-424, 2006. Google Scholar
  13. R. Hüttmann. Planungsmodell zur Entwicklung von Nahverkehrsnetzen liniengebundener Verkehrsmittel, volume 1. Veröffentlichungen des Instituts für Verkehrswirtschaft, Straßenwesen und Städtebau der Universität Hannover, 1979. Google Scholar
  14. S. Kontogiannis and C. Zaroliagis. Robust line planning through elasticity of frequencies. Technical report, ARRIVAL project, 2008. Google Scholar
  15. S. Kontogiannis and C. Zaroliagis. Robust line planning under unknown incentives and elasticity of frequencies. In Matteo Fischetti and Peter Widmayer, editors, ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, volume 9 of Open Access Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: http://dx.doi.org/10.4230/OASIcs.ATMOS.2008.1581.
  16. PTV. Visum. URL: http://vision-traffic.ptvgroup.com/de/produkte/ptv-visum/.
  17. M. Sahling. Linienplanung im öffentlichen Personennahverkehr. Technical report, Universität Karlsruhe, 1981. Google Scholar
  18. A. Schöbel. Line planning in public transportation: models and methods. OR Spectrum, 34(3):491-510, 2012. Google Scholar
  19. A. Schöbel and S. Scholl. Line planning with minimal travel time. In 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, number 06901 in Dagstuhl Seminar Proceedings, 2006. Google Scholar
  20. A. Schöbel and S. Schwarze. A Game-Theoretic Approach to Line Planning. In ATMOS 2006 - 6th Workshop on Algorithmic Methods and Models for Optimization of Railways, September 14, 2006, ETH Zürich, Zurich, Switzerland, Selected Papers, volume 6 of Open Access Series in Informatics (OASIcs). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2006. URL: http://dx.doi.org/10.4230/OASIcs.ATMOS.2006.688.
  21. A. Schöbel and S. Schwarze. Finding delay-resistant line concepts using a game-theoretic approach. Netnomics, 14(3):95-117, 2013. URL: http://dx.doi.org/10.1007/s11066-013-9080-x.
  22. C. Simonis. Optimierung von Omnibuslinien. Berichte stadt-region-land, Institut für Stadtbauwesen, RWTH Aachen, 1981. Google Scholar
  23. H. Sonntag. Linienplanung im öffentlichen Personennahverkehr, pages 430-439. Physica-Verlag HD, 1978. Google Scholar
  24. H. Wegel. Fahrplangestaltung für taktbetriebene Nahverkehrsnetze. PhD thesis, TU Braunschweig, 1974. (in German). Google Scholar
  25. P. J. Zwaneveld. Railway Planning - Routing of trains and allocation of passenger lines. PhD thesis, School of Management, Rotterdam, 1997. Google Scholar
  26. P. J. Zwaneveld, M. T. Claessens, and N. M. van Dijk. A new method to determine the cost optimal allocation of passenger lines. In Defence or Attack: Proceedings of 2nd TRAIL Phd Congress 1996, Part 2, Delft/Rotterdam, 1996. TRAIL Research School. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail