LIPIcs.FSTTCS.2017.27.pdf
- Filesize: 0.52 MB
- 14 pages
This paper studies the stochastic variant of the classical k-TSP problem where rewards at the vertices are independent random variables which are instantiated upon the tour's visit. The objective is to minimize the expected length of a tour that collects reward at least k. The solution is a policy describing the tour which may (adaptive) or may not (non-adaptive) depend on the observed rewards. Our work presents an adaptive O(log k)-approximation algorithm for Stochastic k-TSP, along with a non-adaptive O(log^2 k)-approximation algorithm which also upper bounds the adaptivity gap by O(log^2 k). We also show that the adaptivity gap of Stochastic k-TSP is at least e, even in the special case of stochastic knapsack cover.
Feedback for Dagstuhl Publishing