LIPIcs.ESA.2018.66.pdf
- Filesize: 434 kB
- 14 pages
Let F_{q} be the finite field of size q and let l: F_{q}^{n} -> F_{q} be a linear function. We introduce the Learning From Subset problem LFS(q,n,d) of learning l, given samples u in F_{q}^{n} from a special distribution depending on l: the probability of sampling u is a function of l(u) and is non zero for at most d values of l(u). We provide a randomized algorithm for LFS(q,n,d) with sample complexity (n+d)^{O(d)} and running time polynomial in log q and (n+d)^{O(d)}. Our algorithm generalizes and improves upon previous results [Friedl et al., 2014; Gábor Ivanyos, 2008] that had provided algorithms for LFS(q,n,q-1) with running time (n+q)^{O(q)}. We further present applications of our result to the Hidden Multiple Shift problem HMS(q,n,r) in quantum computation where the goal is to determine the hidden shift s given oracle access to r shifted copies of an injective function f: Z_{q}^{n} -> {0, 1}^{l}, that is we can make queries of the form f_{s}(x,h) = f(x-hs) where h can assume r possible values. We reduce HMS(q,n,r) to LFS(q,n, q-r+1) to obtain a polynomial time algorithm for HMS(q,n,r) when q=n^{O(1)} is prime and q-r=O(1). The best known algorithms [Andrew M. Childs and Wim van Dam, 2007; Friedl et al., 2014] for HMS(q,n,r) with these parameters require exponential time.
Feedback for Dagstuhl Publishing