The Parameterized Complexity of Finding Point Sets with Hereditary Properties

Authors David Eppstein, Daniel Lokshtanov



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2018.11.pdf
  • Filesize: 422 kB
  • 14 pages

Document Identifiers

Author Details

David Eppstein
  • Computer Science Department, University of California, Irvine, USA
Daniel Lokshtanov
  • Department of Informatics, University of Bergen, Norway

Cite As Get BibTex

David Eppstein and Daniel Lokshtanov. The Parameterized Complexity of Finding Point Sets with Hereditary Properties. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.IPEC.2018.11

Abstract

We consider problems where the input is a set of points in the plane and an integer k, and the task is to find a subset S of the input points of size k such that S satisfies some property. We focus on properties that depend only on the order type of the points and are monotone under point removals. We exhibit a property defined by three forbidden patterns for which finding a k-point subset with the property is W[1]-complete and (assuming the exponential time hypothesis) cannot be solved in time n^{o(k/log k)}. However, we show that problems of this type are fixed-parameter tractable for all properties that include all collinear point sets, properties that exclude at least one convex polygon, and properties defined by a single forbidden pattern.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • parameterized complexity
  • fixed-parameter tractability
  • point set pattern matching
  • largest pattern-avoiding subset
  • order type

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. System Sci., 76(7):524-531, 2010. URL: http://dx.doi.org/10.1016/j.jcss.2009.09.002.
  2. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844-856, 1995. URL: http://dx.doi.org/10.1145/210332.210337.
  3. Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing with congestion in acyclic digraphs. In 41st International Symposium on Mathematical Foundations of Computer Science, volume 58 of LIPIcs. Leibniz Int. Proc. Inform., pages 7:1-7:11. Schloss Dagstuhl, Leibniz-Zent. Inform., Wadern, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.7.
  4. Édouard Bonnet, Tillmann Miltzow, and Paweł Rzążewski. Complexity of token swapping and its variants. Algorithmica, 2017. URL: http://dx.doi.org/10.1007/s00453-017-0387-0.
  5. Glencora Borradaile, David Eppstein, and Pingan Zhu. Planar induced subgraphs of sparse graphs. J. Graph Algorithms Appl., 19(1):281-297, 2015. URL: http://dx.doi.org/10.7155/jgaa.00358.
  6. Václav Chvátal and Gheza T. Klincsek. Finding largest convex subsets. In 11th Southeastern Conference on Combinatorics, Graph Theory and Computing, Vol. II, volume 29 of Congressus Numerantium, pages 453-460, 1980. Google Scholar
  7. Herbert Edelsbrunner and Leonidas J. Guibas. Topologically sweeping an arrangement. J. Comput. System Sci., 38(1):165-194, 1989. URL: http://dx.doi.org/10.1016/0022-0000(89)90038-X.
  8. David Eppstein. Forbidden Configurations in Discrete Geometry. Cambridge University Press, 2018. Google Scholar
  9. Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463-470, 1935. URL: http://www.numdam.org/item?id=CM_1935__2__463_0.
  10. Jörg Flum and Martin Grohe. 9.1 Polynomial Kernelizations. In Parameterized Complexity Theory, EATCS Ser. Texts in Theoretical Computer Science, pages 208-212. Springer, 2006. URL: http://dx.doi.org/10.1007/3-540-29953-X.
  11. Michael R. Garey and David S. Johnson. GT21: Induced subgraph with property Π. In Computers and Intractability: A Guide to the Theory of NP-completeness, page 195. W. H. Freeman, 1979. Google Scholar
  12. Panos Giannopoulos, Christian Knauer, and Daniel Werner. On the computational complexity of Erdős-Szekeres and related problems in ℝ³. In 21st Annual European Symposium on Algorithms (ESA 2013), volume 8125 of Lecture Notes in Computer Science, pages 541-552. Springer, 2013. URL: http://dx.doi.org/10.1007/978-3-642-40450-4_46.
  13. Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate representation of order types requires exponential storage. In 21st Symposium on Theory of Computing (STOC '89), pages 405-410. ACM, 1989. URL: http://dx.doi.org/10.1145/73007.73046.
  14. Martin Grohe and Dániel Marx. On tree width, bramble size, and expansion. J. Combin. Theory Ser. B, 99(1):218-228, 2009. URL: http://dx.doi.org/10.1016/j.jctb.2008.06.004.
  15. Richard R. Hall, Terence H. Jackson, Anthony Sudbery, and Ken Wild. Some advances in the no-three-in-line problem. J. Combin. Theory Ser. A, 18:336-341, 1975. URL: http://dx.doi.org/10.1016/0097-3165(75)90043-6.
  16. Heiko Harborth, Arnfried Kemnitz, Meinhard Möller, and Andreas Süssenbach. Ganzzahlige planare Darstellungen der platonischen Körper. Elemente der Mathematik, 42(5):118-122, 1987. URL: https://eudml.org/doc/141411.
  17. Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In 50th IEEE Symposium on Foundations of Computer Science (FOCS 2009), pages 639-648. IEEE Computer Society, Los Alamitos, CA, 2009. URL: http://dx.doi.org/10.1109/FOCS.2009.45.
  18. Ken-ichi Kawarabayashi and Bruce Reed. An (almost) linear time algorithm for odd cycles transversal. In 21st ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pages 365-378, Philadelphia, PA, 2010. SIAM. Google Scholar
  19. Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs with hereditary properties. Theoret. Comput. Sci., 289(2):997-1008, 2002. URL: http://dx.doi.org/10.1016/S0304-3975(01)00414-5.
  20. R. Krithika and N. S. Narayanaswamy. Another disjoint compression algorithm for odd cycle transversal. Inform. Process. Lett., 113(22-24):849-851, 2013. URL: http://dx.doi.org/10.1016/j.ipl.2013.08.007.
  21. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is NP-complete. J. Comput. System Sci., 20(2):219-230, 1980. URL: http://dx.doi.org/10.1016/0022-0000(80)90060-4.
  22. Dániel Marx. Can you beat treewidth? Theory of Computing, 6:85-112, 2010. URL: http://dx.doi.org/10.4086/toc.2010.v006a005.
  23. Klaus F. Roth. On a problem of Heilbronn. J. London Math. Soc., 26:198-204, 1951. URL: http://dx.doi.org/10.1112/jlms/s1-26.3.198.
  24. Andrew Suk. On the Erdős-Szekeres convex polygon problem. J. Amer. Math. Soc., 30:1047-1053, 2017. URL: http://dx.doi.org/10.1090/jams/869.
  25. Terence Tao. The Erdos-Ulam problem, varieties of general type, and the Bombieri-Lang conjecture. In What’s new. WordPress, December 20, 2014. URL: https://terrytao.wordpress.com/2014/12/20/.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail