LIPIcs.IPEC.2018.11.pdf
- Filesize: 422 kB
- 14 pages
We consider problems where the input is a set of points in the plane and an integer k, and the task is to find a subset S of the input points of size k such that S satisfies some property. We focus on properties that depend only on the order type of the points and are monotone under point removals. We exhibit a property defined by three forbidden patterns for which finding a k-point subset with the property is W[1]-complete and (assuming the exponential time hypothesis) cannot be solved in time n^{o(k/log k)}. However, we show that problems of this type are fixed-parameter tractable for all properties that include all collinear point sets, properties that exclude at least one convex polygon, and properties defined by a single forbidden pattern.
Feedback for Dagstuhl Publishing