LIPIcs.FSCD.2019.6.pdf
- Filesize: 0.63 MB
- 19 pages
In their work on second-order equational logic, Fiore and Hur have studied presentations of simply typed languages by generating binding constructions and equations among them. To each pair consisting of a binding signature and a set of equations, they associate a category of "models", and they give a monadicity result which implies that this category has an initial object, which is the language presented by the pair. In the present work, we propose, for the untyped setting, a variant of their approach where monads and modules over them are the central notions. More precisely, we study, for monads over sets, presentations by generating ("higher-order") operations and equations among them. We consider a notion of 2-signature which allows to specify a monad with a family of binding operations subject to a family of equations, as is the case for the paradigmatic example of the lambda calculus, specified by its two standard constructions (application and abstraction) subject to beta- and eta-equalities. Such a 2-signature is hence a pair (Sigma,E) of a binding signature Sigma and a family E of equations for Sigma. This notion of 2-signature has been introduced earlier by Ahrens in a slightly different context. We associate, to each 2-signature (Sigma,E), a category of "models of (Sigma,E)"; and we say that a 2-signature is "effective" if this category has an initial object; the monad underlying this (essentially unique) object is the "monad specified by the 2-signature". Not every 2-signature is effective; we identify a class of 2-signatures, which we call "algebraic", that are effective. Importantly, our 2-signatures together with their models enjoy "modularity": when we glue (algebraic) 2-signatures together, their initial models are glued accordingly. We provide a computer formalization for our main results.
Feedback for Dagstuhl Publishing