We present two new results about exact learning by quantum computers. First, we show how to exactly learn a k-Fourier-sparse n-bit Boolean function from O(k^{1.5}(log k)^2) uniform quantum examples for that function. This improves over the bound of Theta~(kn) uniformly random classical examples (Haviv and Regev, CCC'15). Our main tool is an improvement of Chang’s lemma for sparse Boolean functions. Second, we show that if a concept class {C} can be exactly learned using Q quantum membership queries, then it can also be learned using O ({Q^2}/{log Q} * log|C|) classical membership queries. This improves the previous-best simulation result (Servedio-Gortler, SICOMP'04) by a log Q-factor.
@InProceedings{arunachalam_et_al:LIPIcs.ICALP.2019.16, author = {Arunachalam, Srinivasan and Chakraborty, Sourav and Lee, Troy and Paraashar, Manaswi and de Wolf, Ronald}, title = {{Two New Results About Quantum Exact Learning}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {16:1--16:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.16}, URN = {urn:nbn:de:0030-drops-105929}, doi = {10.4230/LIPIcs.ICALP.2019.16}, annote = {Keywords: quantum computing, exact learning, analysis of Boolean functions, Fourier sparse Boolean functions} }
Feedback for Dagstuhl Publishing