Inferring Diploid 3D Chromatin Structures from Hi-C Data

Authors Alexandra Gesine Cauer, Gürkan Yardımcı, Jean-Philippe Vert, Nelle Varoquaux , William Stafford Noble



PDF
Thumbnail PDF

File

LIPIcs.WABI.2019.11.pdf
  • Filesize: 3.7 MB
  • 13 pages

Document Identifiers

Author Details

Alexandra Gesine Cauer
  • Department of Genome Sciences, University of Washington, Seattle, WA, USA
Gürkan Yardımcı
  • Department of Genome Sciences, University of Washington, Seattle, WA, USA
Jean-Philippe Vert
  • Google Brain, Paris, France
  • Centre for Computational Biology, MINES ParisTech, PSL University Paris, France
Nelle Varoquaux
  • Department of Statistics, UC Berkeley, CA, USA
William Stafford Noble
  • Department of Genome Sciences, University of Washington, Seattle, WA, USA
  • Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA

Cite As Get BibTex

Alexandra Gesine Cauer, Gürkan Yardımcı, Jean-Philippe Vert, Nelle Varoquaux, and William Stafford Noble. Inferring Diploid 3D Chromatin Structures from Hi-C Data. In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 143, pp. 11:1-11:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.WABI.2019.11

Abstract

The 3D organization of the genome plays a key role in many cellular processes, such as gene regulation, differentiation, and replication. Assays like Hi-C measure DNA-DNA contacts in a high-throughput fashion, and inferring accurate 3D models of chromosomes can yield insights hidden in the raw data. For example, structural inference can account for noise in the data, disambiguate the distinct structures of homologous chromosomes, orient genomic regions relative to nuclear landmarks, and serve as a framework for integrating other data types. Although many methods exist to infer the 3D structure of haploid genomes, inferring a diploid structure from Hi-C data is still an open problem. Indeed, the diploid case is very challenging, because Hi-C data typically does not distinguish between homologous chromosomes. We propose a method to infer 3D diploid genomes from Hi-C data. We demonstrate the accuracy of the method on simulated data, and we also use the method to infer 3D structures for mouse chromosome X, confirming that the active homolog exhibits a bipartite structure, whereas the active homolog does not.

Subject Classification

ACM Subject Classification
  • Applied computing → Computational biology
Keywords
  • Genome 3D architecture
  • chromatin structure
  • Hi-C
  • 3D modeling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. F. Ay, T. L. Bailey, and W. S. Noble. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Research, 24:999-1011, 2014. Google Scholar
  2. F. Ay, E. M. Bunnik, N. Varoquaux, S. M. Bol, J. Prudhomme, J.-P. Vert, W. S. Noble, and K. G. Le Roch. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Research, 24:974-988, 2014. Google Scholar
  3. F. Ay, T. H. Vu, M. J. Zeitz, N. Varoquaux, J. E. Carette, J.-P. Vert, A. R. Hoffman, and W. S. Noble. Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC Genomics, 16(121), 2015. Google Scholar
  4. A. Bolzer, G. Kreth, I. Solovei, D. Koehler, K. Saracoglu, C. Fauth, S. Müller, R. Eils, C. Cremer, M. R. Speicher, and T. Cremer. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLOS Biology, 3(5):e157, 2005. Google Scholar
  5. E. M. Bunnik, K. B. Cook, N. Varoquaux, G. Batugedara, J. Prudhomme, A. Cort, L. Shi, C. Andolina, L. S. Ross, D. Brady, D. A. Fidock, F. Nosten, R. Tewari, P. Sinnis, F. Ay, J.-P. Vert, W. S. Noble, and K. G. Le Roch. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nature Communications, 15(9):1910, 2018. Google Scholar
  6. R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing, 16(5):1190-1208, 1995. URL: https://doi.org/10.1137/0916069.
  7. S Carstens, M Nilges, and M Habeck. Inferential structure determination of chromosomes from single-cell Hi-C data. PLOS Computational Biology, 12(12):e1005292, 2016. Google Scholar
  8. S Carstens, M Nilges, and M Habeck. Bayesian inference of chromatin structure ensembles from population Hi-C data. bioRxiv, page 493676, 2018. Google Scholar
  9. M. Carty, L. Zamparo, M. Sahin, A. Gonzalez, R. Pelosoof, O. Elemento, and C. S. Leslie. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data. Nature Communications, 8:15454, 2017. Google Scholar
  10. J. Dekker, K. Rippe, M. Dekker, and N. Kleckner. Capturing chromosome conformation. Science, 295(5558):1306-1311, 2002. Google Scholar
  11. X. Deng, W. Ma, V. Ramani, A. Hill, F. Yang, F. Ay, J. B. Berletch, C. A. Blau, J. Shendure, Z. Duan, W. S. Noble, and C. M. Disteche. Bipartite structure of the inactive mouse X chromosome. Genome Biology, 16:152, 2015. Google Scholar
  12. J R Dixon, I Jung, S Selvaraj, Y Shen, J E Antosiewicz-Bourget, A Y Lee, Z Ye, A Kim, N Rajagopal, W Xie, et al. Chromatin architecture reorganization during stem cell differentiation. Nature, 518(7539):331, 2015. Google Scholar
  13. Z. Duan, M. Andronescu, K. Schutz, S. McIlwain, Y. J. Kim, C. Lee, J. Shendure, S. Fields, C. A. Blau, and W. S. Noble. A three-dimensional model of the yeast genome. Nature, 465:363-367, 2010. Google Scholar
  14. G. Fudenberg and L. A. Mirny. Higher-order chromatin structure: bridging physics and biology. Curr Opin Genet Dev., 22(2):115-124, 2012. Google Scholar
  15. L Giorgetti, R Galupa, E P Nora, T Piolot, F Lam, J Dekker, G Tiana, and E Heard. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell, 157(4):950-963, 2014. Google Scholar
  16. Y Hirata, A Oda, K Ohta, and K Aihara. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots. Scientific reports, 6:34982, 2016. Google Scholar
  17. M. Hu, K. Deng, Z. Qin, J. Dixon, S. Selvaraj, J. Fang, B. Ren, and J. S. Liu. Bayesian inference of spatial organizations of chromosomes. PLOS Comput Biol, 9(1):e1002893, 2013. Google Scholar
  18. M. Imakaev, G. Fudenberg, R. P. McCord, N. Naumova, A. Goloborodko, B. R. Lajoie, J. Dekker, and L. A. Mirny. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature Methods, 9:999-1003, 2012. Google Scholar
  19. I. Junier, R. K. Dale, C. Hou, F. Kepes, and A. Dean. CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the α-globin locus. Nucleic Acids Research, 40(16):7718-7727, 2012. Google Scholar
  20. R. Kalhor, H. Tjong, N. Jayathilaka, F. Alber, and L. Chen. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nature Biotechnology, 30(1):90-98, 2011. Google Scholar
  21. P H L Krijger, B Di Stefano, E de Wit, F Limone, C Van Oevelen, W De Laat, and T Graf. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell, 18(5):597-610, 2016. Google Scholar
  22. T. B. K. Le, M. V. Imakaev, L. A. Mirny, and M. T. Laub. High-Resolution mapping of the spatial organization of a bacterial chromosome. Science, 342(6159):731-734, 2013. Google Scholar
  23. A. Lesne, J. Riposo, P. Roger, A. Cournac, and J. Mozziconacci. 3D genome reconstruction from chromosomal contacts. Nature Methods, 11(11):1141-1143, 2014. Google Scholar
  24. D Lin, G Bonora, G G Yardımcı, and W S Noble. Computational methods for analyzing and modeling genome structure and organization. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 11(1):e1435, 2019. Google Scholar
  25. D. Meluzzi and G. Arya. Recovering ensembles of chromatin conformations from contact probabilities. Nucleic Acids Res., 41(1):63-75, January 2013. Google Scholar
  26. C W Metz. Chromosome studies on the Diptera. II. The paired association of chromosomes in the Diptera, and its significance. Journal of Experimental Zoology, 21(2):213-279, 1916. Google Scholar
  27. T. Nagano, Y. Lubling, C. Várnai, C. Dudley, W. Leung, Y. Baran, N. M. Cohen, S. Wingett, P. Fraser, and A. Tanay. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature, 547:61-67, 2017. Google Scholar
  28. G Nir, I Farabella, C P Estrada, C G Ebeling, B J Beliveau, H M Sasaki, S H Lee, S C Nguyen, R B McCole, S Chattoraj, et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLOS genetics, 14(12):e1007872, 2018. Google Scholar
  29. J Paulsen, M Sekelja, A R Oldenburg, A Barateau, N Briand, E Delbarre, A Shah, A L Sørensen, C Vigouroux, B Buendia, et al. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome biology, 18(1):21, 2017. Google Scholar
  30. S. S. P. Rao, M. H. Huntley, N. Durand, C. Neva, E. K. Stamenova, I. D. Bochkov, J. T. Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, and E. L. Aiden. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 59(7):1665-1680, 2014. Google Scholar
  31. M. Rosenthal, D. Bryner, F. Huffer, S. Evans, A. Srivastava, and N. Neretti. Bayesian Estimation of 3D Chromosomal Structure from Single Cell Hi-C Data. bioRxiv, page 316265, 2018. Google Scholar
  32. S Shah, Y Takei, W Zhou, E Lubeck, J Yun, C Linus Eng, N Koulena, C Cronin, C Karp, E J Liaw, et al. Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron seqFISH. Cell, 2018. Google Scholar
  33. L Tan, D Xing, C Chang, H Li, and X S Xie. Three-dimensional genome structures of single diploid human cells. Science, 361(6405):924-928, 2018. Google Scholar
  34. Z Tang, O J Luo, X Li, M Zheng, Jacqueline J Zhu, P Szalaj, P Trzaskoma, A Magalska, J Wlodarczyk, B Ruszczycki, et al. CTCF-mediated human 3d genome architecture reveals chromatin topology for transcription. Cell, 163(7):1611-1627, 2015. Google Scholar
  35. H. Tanizawa, O. Iwasaki, A. tanaka, J. R. Capizzi, P. Wickramasignhe, M. Lee, Z. Fu, and K. Noma. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Research, 38(22):8164-8177, 2010. Google Scholar
  36. H. Tjong, K. Gong, L. Chen, and F. Alber. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res, 22(7):1295-1305, 2012. Google Scholar
  37. H Tjong, Wenyuan Li, R Kalhor, C Dai, S Hao, K Gong, Y Zhou, Haochen Li, Xianghong J Z, M A Le Gros, et al. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proceedings of the National Academy of Sciences, 113(12):E1663-E1672, 2016. Google Scholar
  38. N. Varoquaux, F. Ay, W. S. Noble, and J.-P. Vert. A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30(12):i26-i33, 2014. Google Scholar
  39. S Wang, J Xu, and J Zeng. Inferential modeling of 3D chromatin structure. Nucleic Acids Research, 43(8):e54, 2015. Google Scholar
  40. B. Zhang and P. G. Wolynes. Topology, structures, and energy landscapes of human chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 112(19):6062-6067, 2015. Google Scholar
  41. Z Zhang, G Li, K-C Toh, and W-K Sung. 3D chromosome modeling with semi-definite programming and Hi-C data. Journal of Computational Biology, 20(11):831-846, 2013. Google Scholar
  42. Z. Zhang, G. Li, K.-C. Toh, and W.-K. Sung. Inference of spatial organizations of chromosomes using semi-definite embedding approach and Hi-C data. In Proceedings of the 17th International Conference on Research in Computational Molecular Biology, volume 7821 of Lecture Notes in Computer Science, pages 317-332, Berlin, Heidelberg, 2013. Springer-Verlag. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail