Document Open Access Logo

The optimal sequence compression

Author Alexander E. Andreev

Thumbnail PDF


  • Filesize: 139 kB
  • 11 pages

Document Identifiers

Author Details

Alexander E. Andreev

Cite AsGet BibTex

Alexander E. Andreev. The optimal sequence compression. In Complexity of Boolean Functions. Dagstuhl Seminar Proceedings, Volume 6111, pp. 1-11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2006)


This paper presents the optimal compression for sequences with undefined values. Let we have $(N-m)$ undefined and $m$ defined positions in the boolean sequence $vv V$ of length $N$. The sequence code length can't be less then $m$ in general case, otherwise at least two sequences will have the same code. We present the coding algorithm which generates codes of almost $m$ length, i.e. almost equal to the lower bound. The paper presents the decoding circuit too. The circuit has low complexity which depends from the inverse density of defined values $D(vv V) = frac{N}{m}$. The decoding circuit includes RAM and random logic. It performs sequential decoding. The total RAM size is proportional to the $$logleft(D(vv V) ight) ,$$ the number of random logic cells is proportional to $$log logleft(D(vv V) ight) * left(log log logleft(D(vv V) ight) ight)^2 .$$ So the decoding circuit will be small enough even for the very low density sequences. The decoder complexity doesn't depend of the sequence length at all.
  • Compression
  • partial boolean function


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail