We develop algorithms to compute edge sequences, Voronoi diagrams, shortest path maps, the Fréchet distance, and the diameter for a polyhedral surface. Distances on the surface are measured either by the length of a Euclidean shortest path or by link distance. Our main result is a linear-factor speedup for computing all shortest path edge sequences on a convex polyhedral surface.
@InProceedings{wenk_et_al:DagSemProc.09111.5, author = {Wenk, Carola and Cook, Atlas F.}, title = {{Shortest Path Problems on a Polyhedral Surface}}, booktitle = {Computational Geometry}, pages = {1--30}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2009}, volume = {9111}, editor = {Pankaj Kumar Agarwal and Helmut Alt and Monique Teillaud}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09111.5}, URN = {urn:nbn:de:0030-drops-20332}, doi = {10.4230/DagSemProc.09111.5}, annote = {Keywords: Shortest paths, edge sequences} }
Feedback for Dagstuhl Publishing