Document

# Deterministic approximation algorithms for the nearest codeword problem

## File

DagSemProc.09421.4.pdf
• Filesize: 245 kB
• 13 pages

## Cite As

Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms for the nearest codeword problem. In Algebraic Methods in Computational Complexity. Dagstuhl Seminar Proceedings, Volume 9421, pp. 1-13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)
https://doi.org/10.4230/DagSemProc.09421.4

## Abstract

The Nearest Codeword Problem (NCP) is a basic algorithmic question in the theory of error-correcting codes. Given a point v in F_2^n and a linear space L in F_2^n of dimension k NCP asks to find a point l in L that minimizes the (Hamming) distance from v. It is well-known that the nearest codeword problem is NP-hard. Therefore approximation algorithms are of interest. The best effcient approximation algorithms for the NCP to date are due to Berman and Karpinski. They are a deterministic algorithm that achieves an approximation ratio of O(k/c) for an arbitrary constant c; and a randomized algorithm that achieves an approximation ratio of O(k/ log n). In this paper we present new deterministic algorithms for approximating the NCP that improve substantially upon the earlier work, (almost) de-randomizing the randomized algorithm of Berman and Karpinski. We also initiate a study of the following Remote Point Problem (RPP). Given a linear space L in F_2^n of dimension k RPP asks to find a point v in F_2^n that is far from L. We say that an algorithm achieves a remoteness of r for the RPP if it always outputs a point v that is at least r-far from L. In this paper we present a deterministic polynomial time algorithm that achieves a remoteness of Omega(n log k / k) for all k < n/2. We motivate the remote point problem by relating it to both the nearest codeword problem and the matrix rigidity approach to circuit lower bounds in computational complexity theory.

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0