Document

# Bounds on the Norms of Uniform Low Degree Graph Matrices

## File

LIPIcs.APPROX-RANDOM.2016.40.pdf
• Filesize: 0.63 MB
• 26 pages

## Cite As

Dhruv Medarametla and Aaron Potechin. Bounds on the Norms of Uniform Low Degree Graph Matrices. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 40:1-40:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.40

## Abstract

The Sum Of Squares hierarchy is one of the most powerful tools we know of for solving combinatorial optimization problems. However, its performance is only partially understood. Improving our understanding of the sum of squares hierarchy is a major open problem in computational complexity theory. A key component of analyzing the sum of squares hierarchy is understanding the behavior of certain matrices whose entries are random but not independent. For these matrices, there is a random input graph and each entry of the matrix is a low degree function of the edges of this input graph. Moreoever, these matrices are generally invariant (as a function of the input graph) when we permute the vertices of the input graph. In this paper, we bound the norms of all such matrices up to a polylogarithmic factor.
##### Keywords
• sum of squares hierarchy
• matrix norm bounds

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a random graph. Random Structures and Algorithms, 13(3-4):457-466, 1998.
2. Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games and related problems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 563-572. IEEE, 2010.
3. Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.
4. Boaz Barak, Sam Hopkins, Jonathan Kelner, Ankur Moitra, Pravesh Kothari, and Aaron Potechin. A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem. ArXiv e-prints, April 2016. URL: http://arxiv.org/abs/1503.06447.
5. Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming hierarchies via global correlation. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pages 472-481. IEEE, 2011.
6. Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal algorithms. In Proceedings of International Congress of Mathematicians (ICM), 2014.
7. Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden clique and hidden submatrix problems. CoRR, abs/1502.06590, 2015. URL: http://arxiv.org/abs/1502.06590.
8. Uriel Feige and Robert Krauthgamer. The probable value of the lovász-schrijver relaxations for maximum independent set. SIAM J. Comput., 32(2):345-370, 2003. URL: http://dx.doi.org/10.1137/S009753970240118X.
9. Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying Xiao. Statistical algorithms and a lower bound for detecting planted cliques. In Proceedings of the forty-fourth annual ACM symposium on Theory of Computing. ACM, 2013.
10. Vyacheslav L. Girko. Circular law. Theory of Probability and its Applications, 29:694-706, 1984.
11. Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115-1145, 1995.
12. Dima Grigoriev. Complexity of positivstellensatz proofs for the knapsack. Computational Complexity, 10(2):139-154, 2001.
13. Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theoretical Computer Science, 259(1):613-622, 2001.
14. Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and approximation schemes for graph partitioning and quadratic integer programming with psd objectives. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pages 482-491. IEEE, 2011.
15. Samuel B. Hopkins, Pravesh K. Kothari, and Aaron Potechin. Sos and planted clique: Tight analysis of MPW moments at all degrees and an optimal lower bound at degree four. CoRR, abs/1507.05230, 2015. URL: http://arxiv.org/abs/1507.05230.
16. Mark Jerrum. Large cliques elude the metropolis process. Random Structures &Algorithms, 3(4):347-359, 1992.
17. Denés Konig. Gráfok és mátrixok. matematikai és fizikai lapok, 38: 116-119, 1931.
18. Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Applied Mathematics, 57(2):193-212, 1995.
19. Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796-817, 2001.
20. R. Meka, A. Potechin, and A. Wigderson. Sum-of-squares lower bounds for planted clique. ArXiv e-prints, March 2015. URL: http://arxiv.org/abs/1503.06447.
21. Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96-115, 1927.
22. Yurii Nesterov. Squared functional systems and optimization problems. In High performance optimization, pages 405-440. Springer, 2000.
23. Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, Citeseer, 2000.
24. Prasad Raghavendra and Tselil Schramm. Tight lower bounds for planted clique in the degree-4 SOS program. CoRR, abs/1507.05136, 2015. URL: http://arxiv.org/abs/1507.05136.
25. Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In Foundations of Computer Science, 2008. FOCS'08. IEEE 49th Annual IEEE Symposium on, pages 593-602. IEEE, 2008.
26. NZ Shor. Class of global minimum bounds of polynomial functions. Cybernetics and Systems Analysis, 23(6):731-734, 1987.
27. Eugene P Wigner. On the distribution of the roots of certain symmetric matrices. Annals of Mathematics, pages 325-327, 1958.