On Minrank and Forbidden Subgraphs

Author Ishay Haviv



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2018.42.pdf
  • Filesize: 420 kB
  • 14 pages

Document Identifiers

Author Details

Ishay Haviv
  • School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv 61083, Israel

Cite AsGet BibTex

Ishay Haviv. On Minrank and Forbidden Subgraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 42:1-42:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.42

Abstract

The minrank over a field F of a graph G on the vertex set {1,2,...,n} is the minimum possible rank of a matrix M in F^{n x n} such that M_{i,i} != 0 for every i, and M_{i,j}=0 for every distinct non-adjacent vertices i and j in G. For an integer n, a graph H, and a field F, let g(n,H,F) denote the maximum possible minrank over F of an n-vertex graph whose complement contains no copy of H. In this paper we study this quantity for various graphs H and fields F. For finite fields, we prove by a probabilistic argument a general lower bound on g(n,H,F), which yields a nearly tight bound of Omega(sqrt{n}/log n) for the triangle H=K_3. For the real field, we prove by an explicit construction that for every non-bipartite graph H, g(n,H,R) >= n^delta for some delta = delta(H)>0. As a by-product of this construction, we disprove a conjecture of Codenotti, Pudlák, and Resta. The results are motivated by questions in information theory, circuit complexity, and geometry.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Information theory
Keywords
  • Minrank
  • Forbidden subgraphs
  • Shannon capacity
  • Circuit Complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Miklós Ajtai, János Komlós, and Endre Szemerédi. A note on Ramsey numbers. J. Comb. Theory, Ser. A, 29(3):354-360, 1980. Google Scholar
  2. Noga Alon. Explicit Ramsey graphs and orthonormal labelings. Electr. J. Comb., 1(R12), 1994. Google Scholar
  3. Noga Alon. Graph powers. In B. Bollobás, editor, Contemporary Combinatorics, Bolyai Society Mathematical Studies, pages 11-28. Springer, 2002. Google Scholar
  4. Noga Alon, László Babai, and H. Suzuki. Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems. J. Comb. Theory, Ser. A, 58(2):165-180, 1991. Google Scholar
  5. Noga Alon, Michael Krivelevich, and Benny Sudakov. Maxcut in H-free graphs. Combinatorics, Probability and Computing, 14(5-6):629–-647, 2005. Google Scholar
  6. Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016. Google Scholar
  7. Ziv Bar-Yossef, Yitzhak Birk, T. S. Jayram, and Tomer Kol. Index coding with side information. In FOCS, pages 197-206, 2006. Google Scholar
  8. Anna Blasiak, Robert Kleinberg, and Eyal Lubetzky. Broadcasting with side information: Bounding and approximating the broadcast rate. IEEE Trans. Information Theory, 59(9):5811-5823, 2013. Google Scholar
  9. Yair Caro, Yusheng Li, Cecil C. Rousseau, and Yuming Zhang. Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers. Discrete Mathematics, 220(1-3):51-56, 2000. Google Scholar
  10. Eden Chlamtáč and Ishay Haviv. Linear index coding via semidefinite programming. Combinatorics, Probability & Computing, 23(2):223-247, 2014. Preliminary version in SODA'12. Google Scholar
  11. Bruno Codenotti, Pavel Pudlák, and Giovanni Resta. Some structural properties of low-rank matrices related to computational complexity. Theor. Comput. Sci., 235(1):89-107, 2000. Preliminary version in ECCC'97. Google Scholar
  12. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, and Richard H. Schelp. On cycle-complete graph Ramsey numbers. J. Graph Theory, 2(1):53-64, 1978. Google Scholar
  13. Paul Erdös and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In A. Hajnal, R. Rado, and V. T. Sós, editors, Infinite and Finite Sets, pages 609-627. North-Holland, Amsterdam, 1975. Google Scholar
  14. Paul Erdös, Robert J. McEliece, and Herbert Taylor. Ramsey bounds for graph products. Pacific J. Math., 37(1):45-46, 1971. Google Scholar
  15. Alexander Golovnev, Oded Regev, and Omri Weinstein. The minrank of random graphs. In Randomization and Approximation Techniques in Computer Science (RANDOM), pages 46:1-46:13, 2017. Google Scholar
  16. Willem Haemers. On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(2):231-232, 1979. Google Scholar
  17. Willem Haemers. An upper bound for the Shannon capacity of a graph. In Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János Bolyai, pages 267-272. North-Holland, Amsterdam, 1981. Google Scholar
  18. Ishay Haviv. On minrank and the Lovász theta function. In Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2018. To appear. Google Scholar
  19. Ishay Haviv and Michael Langberg. H-wise independence. In Innovations in Theoretical Computer Science (ITCS'13), pages 541-552, 2013. Google Scholar
  20. B. S. Kashin and S. V. Konyagin. Systems of vectors in Hilbert space. In Number theory, mathematical analysis, and their applications, volume 157, pages 64-67. Trudy Mat. Inst. Steklov., 1981. Google Scholar
  21. S. V. Konyagin. Systems of vectors in Euclidean space and an extremal problem for polynomials. Mat. Zametki, 29(1):63-74, 1981. Google Scholar
  22. László Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1-7, 1979. Google Scholar
  23. René Peeters. Orthogonal representations over finite fields and the chromatic number of graphs. Combinatorica, 16(3):417-431, 1996. Google Scholar
  24. Pavel Pudlák. Cycles of nonzero elements in low rank matrices. Combinatorica, 22(2):321-334, 2002. Google Scholar
  25. Pavel Pudlák, Vojtech Rödl, and Jirí Sgall. Boolean circuits, tensor ranks, and communication complexity. SIAM J. Comput., 26(3):605-633, 1997. Google Scholar
  26. Søren Riis. Information flows, graphs and their guessing numbers. Electr. J. Comb., 14(1), 2007. Google Scholar
  27. Moshe Rosenfeld. Almost orthogonal lines in E^d. DIMACS Series in Discrete Math., 4:489-492, 1991. Google Scholar
  28. Claude E. Shannon. The zero error capacity of a noisy channel. Institute of Radio Engineers, Transactions on Information Theory, IT-2:8-19, 1956. Google Scholar
  29. Joel Spencer. Asymptotic lower bounds for Ramsey functions. Discrete Mathematics, 20:69-76, 1977. Google Scholar
  30. Benny Sudakov. A note on odd cycle-complete graph Ramsey numbers. Electr. J. Comb., 9(1), 2002. Google Scholar
  31. Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical Foundations of Computer Science (MFCS), 6th Symposium, pages 162-176, 1977. Google Scholar
  32. Leslie G. Valiant. Why is Boolean complexity theory difficult? In Poceedings of the London Mathematical Society symposium on Boolean function complexity, volume 169, pages 84-94, 1992. Google Scholar
  33. Xiaodong Xu, Xie Zheng, Geoffrey Exoo, and Stanislaw P. Radziszowski. Constructive lower bounds on classical multicolor Ramsey numbers. Electr. J. Comb., 11(1), 2004. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail