LIPIcs.APPROX-RANDOM.2024.1.pdf
- Filesize: 0.89 MB
- 18 pages
We present a new (3/2 + 1/e)-approximation algorithm for the Ordered Traveling Salesperson Problem (Ordered TSP). Ordered TSP is a variant of the classic metric Traveling Salesperson Problem (TSP) where a specified subset of vertices needs to appear on the output Hamiltonian cycle in a given order, and the task is to compute a cheapest such cycle. Our approximation guarantee of approximately 1.868 holds with respect to the value of a natural new linear programming (LP) relaxation for Ordered TSP. Our result significantly improves upon the previously best known guarantee of 5/2 for this problem and thereby considerably reduces the gap between approximability of Ordered TSP and metric TSP. Our algorithm is based on a decomposition of the LP solution into weighted trees that serve as building blocks in our tour construction.
Feedback for Dagstuhl Publishing