A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

Authors Susanne Armbruster , Matthias Mnich , Martin Nägele



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.1.pdf
  • Filesize: 0.89 MB
  • 18 pages

Document Identifiers

Author Details

Susanne Armbruster
  • Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics, University of Bonn, Germany
Matthias Mnich
  • Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany
Martin Nägele
  • Department of Mathematics, ETH Zurich, Zurich, Switzerland

Cite AsGet BibTex

Susanne Armbruster, Matthias Mnich, and Martin Nägele. A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.1

Abstract

We present a new (3/2 + 1/e)-approximation algorithm for the Ordered Traveling Salesperson Problem (Ordered TSP). Ordered TSP is a variant of the classic metric Traveling Salesperson Problem (TSP) where a specified subset of vertices needs to appear on the output Hamiltonian cycle in a given order, and the task is to compute a cheapest such cycle. Our approximation guarantee of approximately 1.868 holds with respect to the value of a natural new linear programming (LP) relaxation for Ordered TSP. Our result significantly improves upon the previously best known guarantee of 5/2 for this problem and thereby considerably reduces the gap between approximability of Ordered TSP and metric TSP. Our algorithm is based on a decomposition of the LP solution into weighted trees that serve as building blocks in our tour construction.

Subject Classification

ACM Subject Classification
  • Theory of computation → Discrete optimization
  • Theory of computation → Routing and network design problems
  • Theory of computation → Rounding techniques
Keywords
  • Travelling Salesperson Problem
  • precedence constraints
  • linear programming
  • approximation algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Susanne Armbruster, Matthias Mnich, and Martin Nägele. A (rac32+rac1e)-approximation algorithm for Ordered TSP, 2024. URL: https://arxiv.org/abs/2405.06244v1.
  2. Egon Balas, Matteo Fischetti, and William R. Pulleyblank. The precedence-constrained asymmetric traveling salesman polytope. Mathematical Programming, 68(1):241-265, 1995. URL: https://doi.org/10.1007/BF01585767.
  3. Jørgen Bang-Jensen, András Frank, and Bill Jackson. Preserving and increasing local edge connectivity in mixed graphs. SIAM Journal on Discrete Mathematics, 8(2):155-178, 1995. URL: https://doi.org/10.1137/S0036142993226983.
  4. Jannis Blauth, Nathan Klein, and Martin Nägele. A better-than-1.6-approximation for prize-collecting TSP. In Proceedings of the 23rd Conference on Integer Programming and Combinatorial Optimization (IPCO '24), pages 28-42, 2024. URL: https://doi.org/10.1007/978-3-031-59835-7_3.
  5. Jannis Blauth and Martin Nägele. An improved approximation guarantee for prize-collecting TSP. In Proceedings of the 55th Annual ACM SIGACT Symposium on Theory of Computing (STOC '23), pages 1848-1861, 2023. URL: https://doi.org/10.1145/3564246.3585159.
  6. Hans-Joachim Böckenhauer, Juraj Hromkovič, Joachim Kneis, and Joachim Kupke. On the approximation hardness of some generalizations of TSP. In Proceedings of the 10th Scandinavian Workshop on Algorithm Theory (SWAT '06), pages 184-195, 2006. URL: https://doi.org/10.1007/11785293_19.
  7. Hans-Joachim Böckenhauer, Tobias Mömke, and Monika Steinová. Improved approximations for TSP with simple precedence constraints. Journal of Discrete Algorithms, 21:32-40, 2013. URL: https://doi.org/10.1016/j.jda.2013.04.002.
  8. Martin Böhm, Zachary Friggstad, Tobias Mömke, and Joachim Spoerhase. Approximating TSP variants using a bridge lemma, 2024. URL: https://arxiv.org/abs/2405.12876.
  9. Moses Charikar, Rajeev Motwani, Prabhakar Raghavan, and Craig Silverstein. Constrained TSP and low-power computing. In Proceedings of the 5th International Workshop on Algorithms and Data Structures (WADS '97), pages 104-115, 1997. URL: https://doi.org/10.1007/3-540-63307-3_51.
  10. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon University, 1976. Google Scholar
  11. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Operations Research Forum, 3, 2022. URL: https://doi.org/10.1007/s43069-021-00101-z.
  12. G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem. Journal of the Operations Research Society of America, 2(4):393-410, 1954. URL: https://doi.org/10.1287/opre.2.4.393.
  13. Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang. Scheduling with communication delays via LP hierarchies and clustering. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS '20), pages 822-833, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00081.
  14. Vladimir G. Deĭneko, Michael Hoffmann, Yoshio Okamoto, and Gerhard J. Woeginger. The traveling salesman problem with few inner points. Operations Research Letters, 34(1):106-110, 2006. URL: https://doi.org/10.1016/j.orl.2005.01.002.
  15. Jianzhong Du, Joseph Y-T. Leung, and Gilbert H. Young. Scheduling chain-structured tasks to minimize makespan and mean flow time. Information and Computation, 92(2):219-236, 1991. URL: https://doi.org/10.1016/0890-5401(91)90009-Q.
  16. András Frank. On a theorem of Mader. Discrete Mathematics, 101(1):49-57, 1992. URL: https://doi.org/10.1016/0012-365X(92)90589-8.
  17. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, first edition edition, 1979. Google Scholar
  18. L. Gouveia and P. Pesneau. On extended formulations for the precedence constrained asymmetric traveling salesman problem. Networks, 48(2):77-89, 2006. URL: https://doi.org/10.1002/net.20122.
  19. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17(2):416-429, 1969. URL: https://doi.org/10.1137/0117039.
  20. Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning trees. Operations Research, 18(6):1138-1162, 1970. URL: https://doi.org/10.1287/opre.18.6.1138.
  21. Klaus Jansen and Roberto Solis-Oba. Approximation schemes for scheduling jobs with chain precedence constraints. International Journal of Foundations of Computer Science, 21(01):27-49, 2010. URL: https://doi.org/10.1142/S0129054110007118.
  22. Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation algorithm for metric TSP. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC '21), pages 32-45, 2021. URL: https://doi.org/10.1145/3406325.3451009.
  23. Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A deterministic better-than-3/2 approximation algorithm for metric TSP. In Proceedings of the 22nd Conference on Integer Programming and Combinatorial Optimization (IPCO '23), pages 261-274, 2023. URL: https://doi.org/10.1007/978-3-031-32726-1_19.
  24. Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds for TSP. Journal of Computer and System Sciences, 81(8):1665-1677, 2015. URL: https://doi.org/10.1016/j.jcss.2015.06.003.
  25. Daniil Khachai, Ruslan Sadykov, Olga Battaia, and Michael Khachay. Precedence constrained generalized traveling salesman problem: Polyhedral study, formulations, and branch-and-cut algorithm. European Journal of Operational Research, 309(2):488-505, 2023. URL: https://doi.org/10.1016/j.ejor.2023.01.039.
  26. Manfred Kunde. Nonpreemptive LP-scheduling on homogeneous multiprocessor systems. SIAM Journal on Computing, 10(1):151-173, 1981. URL: https://doi.org/10.1137/0210012.
  27. J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity results for scheduling chains on a single machine. European Journal of Operational Research, 4(4):270-275, 1980. URL: https://doi.org/10.1016/0377-2217(80)90111-3.
  28. Elaine Levey and Thomas Rothvoss. A (1+ε)-approximation for makespan scheduling with precedence constraints using LP hierarchies. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC '16), pages 168-177, 2016. URL: https://doi.org/10.1145/2897518.2897532.
  29. Mohammad Mehdi Liaee and Hamilton Emmons. Scheduling families of jobs with setup times. International Journal of Production Economics, 51(3):165-176, 1997. URL: https://doi.org/10.1016/S0925-5273(96)00105-3.
  30. L. Lovász. On some connectivity properties of Eulerian graphs. Acta Mathematica Academiae Scientiarum Hungarica, 28(1):129-138, 1976. URL: https://doi.org/10.1007/BF01902503.
  31. W. Mader. A reduction method for edge-connectivity in graphs. Annals of Discrete Mathematics, 3:145-164, 1978. URL: https://doi.org/10.1016/S0167-5060(08)70504-1.
  32. Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with distances one and two. Mathematics of Operations Research, 18(1):1-11, 1993. URL: https://doi.org/10.1287/moor.18.1.1.
  33. Yaroslav Salii. Revisiting dynamic programming for precedence-constrained traveling salesman problem and its time-dependent generalization. European Journal of Operational Research, 272(1):32-42, 2019. URL: https://doi.org/10.1016/j.ejor.2018.06.003.
  34. Sophia Saller, Jana Koehler, and Andreas Karrenbauer. A systematic review of approximability results for traveling salesman problems leveraging the TSP-T3CO definition scheme, 2023. URL: https://arxiv.org/abs/2311.00604.
  35. A. I. Serdyukov. O nekotorykh ekstremal’nykh obkhodakh v grafakh. Upravlyaemye sistemy, 17:76-79, 1987. URL: http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf.
  36. Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines. In Proceedings of the 42nd Annual ACM SIGACT Symposium on Theory of Computing (STOC '10), pages 745-754, 2010. URL: https://doi.org/10.1145/1806689.1806791.
  37. Gerhard J. Woeginger. A comment on scheduling on uniform machines under chain-type precedence constraints. Operations Research Letters, 26(3):107-109, 2000. URL: https://doi.org/10.1016/S0167-6377(99)00076-0.
  38. Laurence A. Wolsey. Heuristic analysis, linear programming and branch and bound, pages 121-134. Springer Berlin Heidelberg, 1980. URL: https://doi.org/10.1007/BFb0120913.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail