LIPIcs.APPROX-RANDOM.2024.24.pdf
- Filesize: 0.72 MB
- 18 pages
We study the Maximum Independent Set (MIS) problem on general graphs within the framework of learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to approximate to within a factor of n^(1-δ) for any δ > 0. We show that we can break this barrier in the presence of an oracle obtained through predictions from a machine learning model that answers vertex membership queries for a fixed MIS with probability 1/2+ε. In the first setting we consider, the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle returns the correct answer with probability 1/2 + ε. Under this setting, we show an algorithm that obtains an Õ((√Δ)/ε)-approximation in O(m) time where Δ is the maximum degree of the graph. In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct with probability 1/2 + ε. For this setting, we show an O(1)-approximation algorithm using O(n/ε²) total queries and Õ(m) runtime.
Feedback for Dagstuhl Publishing