Hybrid k-Clustering: Blending k-Median and k-Center

Authors Fedor V. Fomin , Petr A. Golovach , Tanmay Inamdar , Saket Saurabh , Meirav Zehavi



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.4.pdf
  • Filesize: 1.3 MB
  • 19 pages

Document Identifiers

Author Details

Fedor V. Fomin
  • University of Bergen, Norway
Petr A. Golovach
  • University of Bergen, Norway
Tanmay Inamdar
  • Indian Institute of Technology Jodhpur, Jodhpur, India
Saket Saurabh
  • The Institute of Mathematical Sciences, HBNI, Chennai, India
  • University of Bergen, Norway
Meirav Zehavi
  • Ben-Gurion University of the Negev, Beer-Sheva, Israel

Cite AsGet BibTex

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi. Hybrid k-Clustering: Blending k-Median and k-Center. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.4

Abstract

We propose a novel clustering model encompassing two well-known clustering models: k-center clustering and k-median clustering. In the Hybrid k-Clustering problem, given a set P of points in ℝ^d, an integer k, and a non-negative real r, our objective is to position k closed balls of radius r to minimize the sum of distances from points not covered by the balls to their closest balls. Equivalently, we seek an optimal L₁-fitting of a union of k balls of radius r to a set of points in the Euclidean space. When r = 0, this corresponds to k-median; when the minimum sum is zero, indicating complete coverage of all points, it is k-center. Our primary result is a bicriteria approximation algorithm that, for a given ε > 0, produces a hybrid k-clustering with balls of radius (1+ε)r. This algorithm achieves a cost at most 1+ε of the optimum, and it operates in time 2^{(kd/ε)^𝒪(1)} ⋅ n^𝒪(1). Notably, considering the established lower bounds on k-center and k-median, our bicriteria approximation stands as the best possible result for Hybrid k-Clustering.

Subject Classification

ACM Subject Classification
  • Theory of computation → Facility location and clustering
  • Theory of computation → Fixed parameter tractability
Keywords
  • clustering
  • k-center
  • k-median
  • Euclidean space
  • fpt approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized approximation for robust clustering in discrete geometric spaces. CoRR, abs/2305.07316, 2023. URL: https://doi.org/10.48550/arXiv.2305.07316.
  2. Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized approximation schemes for clustering with general norm objectives. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1377-1399. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00085.
  3. Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu. Robust shape fitting via peeling and grating coresets. Discret. Comput. Geom., 39(1-3):38-58, 2008. URL: https://doi.org/10.1007/S00454-007-9013-2.
  4. Pankaj K. Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation algorithms for clustering. Algorithmica, 33(2):201-226, 2002. URL: https://doi.org/10.1007/S00453-001-0110-Y.
  5. Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In Proceedings on 34th Annual ACM Symposium on Theory of Computing, (STOC), pages 250-257. ACM, 2002. URL: https://doi.org/10.1145/509907.509947.
  6. Jaroslaw Byrka, Krzysztof Sornat, and Joachim Spoerhase. Constant-factor approximation for ordered k-median. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 620-631. ACM, 2018. URL: https://doi.org/10.1145/3188745.3188930.
  7. Deeparnab Chakrabarty and Chaitanya Swamy. Interpolating between k-median and k-center: Approximation algorithms for ordered k-median. In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP), volume 107 of LIPIcs, pages 29:1-29:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ICALP.2018.29.
  8. Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility location problems with outliers. In Proceedings of the Twelfth Annual Symposium on Discrete Algorithms (SODA), pages 642-651. ACM/SIAM, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365555.
  9. Moses Charikar and Erik Waingarten. The johnson-lindenstrauss lemma for clustering and subspace approximation: From coresets to dimension reduction. CoRR, abs/2205.00371, 2022. URL: https://doi.org/10.48550/arXiv.2205.00371.
  10. Vincent Cohen-Addad, Arnaud de Mesmay, Eva Rotenberg, and Alan Roytman. The bane of low-dimensionality clustering. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 441-456. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.30.
  11. Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight FPT approximations for k-median and k-means. In 46th International Colloquium on Automata, Languages, and Programming (ICALP), volume 132 of LIPIcs, pages 42:1-42:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.42.
  12. Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Comput., 48(2):644-667, 2019. URL: https://doi.org/10.1137/17M112717X.
  13. Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards optimal lower bounds for k-median and k-means coresets. In Proceddings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1038-1051. ACM, 2022. URL: https://doi.org/10.1145/3519935.3519946.
  14. Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. k-center clustering with outliers in the MPC and streaming model. In IEEE International Parallel and Distributed Processing Symposium, (IPDPS), pages 853-863. IEEE, 2023. URL: https://doi.org/10.1109/IPDPS54959.2023.00090.
  15. Hu Ding, Haikuo Yu, and Zixiu Wang. Greedy strategy works for k-center clustering with outliers and coreset construction. In 27th Annual European Symposium on Algorithms (ESA), volume 144 of LIPIcs, pages 40:1-40:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ESA.2019.40.
  16. Alon Efrat, Micha Sharir, and Alon Ziv. Computing the smallest k-enclosing circle and related problems. Comput. Geom., 4:119-136, 1994. URL: https://doi.org/10.1016/0925-7721(94)90003-5.
  17. Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi. Hybrid k-clustering: Blending k-median and k-center, 2024. URL: https://arxiv.org/abs/2407.08295.
  18. Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452-480, 2019. URL: https://doi.org/10.1137/17M1127181.
  19. Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial covering problems. Journal of Algorithms, 53(1):55-84, 2004. Google Scholar
  20. Sariel Har-Peled. How to get close to the median shape. Comput. Geom., 36(1):39-51, 2007. URL: https://doi.org/10.1016/J.COMGEO.2006.02.003.
  21. Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the smallest k-enclosing circle. Algorithmica, 41(3):147-157, 2005. URL: https://doi.org/10.1007/S00453-004-1123-0.
  22. Sariel Har-Peled and Yusu Wang. Shape fitting with outliers. SIAM J. Comput., 33(2):269-285, 2004. URL: https://doi.org/10.1137/S0097539703427963.
  23. Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D 2-sampling based PTAS for k-means and other clustering problems. Algorithmica, 70(1):22-46, 2014. URL: https://doi.org/10.1007/S00453-013-9833-9.
  24. Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear time algorithms for clustering problems in any dimensions. In 32nd International Colloquium on Automata, Languages and Programming (ICALP), volume 3580 of Lecture Notes in Computer Science, pages 1374-1385. Springer, 2005. URL: https://doi.org/10.1007/11523468_111.
  25. Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for clustering problems in any dimensions. J. ACM, 57(2):5:1-5:32, 2010. Google Scholar
  26. Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of Johnson-Lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1027-1038. ACM, 2019. URL: https://doi.org/10.1145/3313276.3316350.
  27. Dániel Marx. Efficient approximation schemes for geometric problems? In 13th Annual European Symposium on Algorithms (ESA), volume 3669 of Lecture Notes in Computer Science, pages 448-459. Springer, 2005. URL: https://doi.org/10.1007/11561071_41.
  28. Jirí Matousek. On enclosing k points by a circle. Inf. Process. Lett., 53(4):217-221, 1995. URL: https://doi.org/10.1016/0020-0190(94)00190-A.
  29. Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric location problems. SIAM journal on computing, 13(1):182-196, 1984. Google Scholar
  30. Arie Tamir. The k-centrum multi-facility location problem. Discret. Appl. Math., 109(3):293-307, 2001. URL: https://doi.org/10.1016/S0166-218X(00)00253-5.
  31. Hai Yu, Pankaj K. Agarwal, Raghunath Poreddy, and Kasturi R. Varadarajan. Practical methods for shape fitting and kinetic data structures using coresets. Algorithmica, 52(3):378-402, 2008. URL: https://doi.org/10.1007/S00453-007-9067-9.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail