LIPIcs.APPROX-RANDOM.2024.4.pdf
- Filesize: 1.3 MB
- 19 pages
We propose a novel clustering model encompassing two well-known clustering models: k-center clustering and k-median clustering. In the Hybrid k-Clustering problem, given a set P of points in ℝ^d, an integer k, and a non-negative real r, our objective is to position k closed balls of radius r to minimize the sum of distances from points not covered by the balls to their closest balls. Equivalently, we seek an optimal L₁-fitting of a union of k balls of radius r to a set of points in the Euclidean space. When r = 0, this corresponds to k-median; when the minimum sum is zero, indicating complete coverage of all points, it is k-center. Our primary result is a bicriteria approximation algorithm that, for a given ε > 0, produces a hybrid k-clustering with balls of radius (1+ε)r. This algorithm achieves a cost at most 1+ε of the optimum, and it operates in time 2^{(kd/ε)^𝒪(1)} ⋅ n^𝒪(1). Notably, considering the established lower bounds on k-center and k-median, our bicriteria approximation stands as the best possible result for Hybrid k-Clustering.
Feedback for Dagstuhl Publishing