For a large class of random constraint satisfaction problems (csp), deep but non-rigorous theory from statistical physics predict the location of the sharp satisfiability transition. The works of Ding, Sly, Sun (2014, 2016) and Coja-Oghlan, Panagiotou (2014) established the satisfiability threshold for random regular k-nae-sat, random k-sat, and random regular k-sat for large enough k ≥ k₀ where k₀ is a large non-explicit constant. Establishing the same for small values of k ≥ 3 remains an important open problem in the study of random csps. In this work, we study two closely related models of random csps, namely the 2-coloring on random d-regular k-uniform hypergraphs and the random d-regular k-nae-sat model. For every k ≥ 3, we prove that there is an explicit d_⋆(k) which gives a satisfiability upper bound for both of the models. Our upper bound d_⋆(k) for k ≥ 3 matches the prediction from statistical physics for the hypergraph 2-coloring by Dall’Asta, Ramezanpour, Zecchina (2008), thus conjectured to be sharp. Moreover, d_⋆(k) coincides with the satisfiability threshold of random regular k-nae-sat for large enough k ≥ k₀ by Ding, Sly, Sun (2014).
@InProceedings{chang_et_al:LIPIcs.APPROX/RANDOM.2024.47, author = {Chang, Evan and Kolhe, Neel and Sohn, Youngtak}, title = {{Upper Bounds on the 2-Colorability Threshold of Random d-Regular k-Uniform Hypergraphs for k ≥ 3}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)}, pages = {47:1--47:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-348-5}, ISSN = {1868-8969}, year = {2024}, volume = {317}, editor = {Kumar, Amit and Ron-Zewi, Noga}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.47}, URN = {urn:nbn:de:0030-drops-210402}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2024.47}, annote = {Keywords: Random constraint satisfaction problem, replica symmetry breaking, interpolation bound} }
Feedback for Dagstuhl Publishing