LIPIcs.APPROX-RANDOM.2024.49.pdf
- Filesize: 0.98 MB
- 24 pages
For distributions over discrete product spaces ∏_{i=1}^n Ω_i', Glauber dynamics is a Markov chain that at each step, resamples a random coordinate conditioned on the other coordinates. We show that k-Glauber dynamics, which resamples a random subset of k coordinates, mixes k times faster in χ²-divergence, and assuming approximate tensorization of entropy, mixes k times faster in KL-divergence. We apply this to obtain parallel algorithms in two settings: (1) For the Ising model μ_{J,h}(x) ∝ exp(1/2 ⟨x,Jx⟩ + ⟨h,x⟩) with ‖J‖ < 1-c (the regime where fast mixing is known), we show that we can implement each step of Θ(n/‖J‖_F)-Glauber dynamics efficiently with a parallel algorithm, resulting in a parallel algorithm with running time Õ(‖J‖_F) = Õ(√n). (2) For the mixed p-spin model at high enough temperature, we show that with high probability we can implement each step of Θ(√n)-Glauber dynamics efficiently and obtain running time Õ(√n).
Feedback for Dagstuhl Publishing