Stochastic Distance in Property Testing

Authors Uri Meir , Gregory Schwartzman, Yuichi Yoshida



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.57.pdf
  • Filesize: 0.67 MB
  • 13 pages

Document Identifiers

Author Details

Uri Meir
  • Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
Gregory Schwartzman
  • JAIST, Nomi, Japan
Yuichi Yoshida
  • Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan

Cite AsGet BibTex

Uri Meir, Gregory Schwartzman, and Yuichi Yoshida. Stochastic Distance in Property Testing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 57:1-57:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.57

Abstract

We introduce a novel concept termed "stochastic distance" for property testing. Diverging from the traditional definition of distance, where a distance t implies that there exist t edges that can be added to ensure a graph possesses a certain property (such as k-edge-connectivity), our new notion implies that there is a high probability that adding t random edges will endow the graph with the desired property. While formulating testers based on this new distance proves challenging in a sequential environment, it is much easier in a distributed setting. Taking k-edge-connectivity as a case study, we design ultra-fast testing algorithms in the CONGEST model. Our introduction of stochastic distance offers a more natural fit for the distributed setting, providing a promising avenue for future research in emerging models of computation.

Subject Classification

ACM Subject Classification
  • Theory of computation → Streaming, sublinear and near linear time algorithms
  • Mathematics of computing → Random graphs
  • Theory of computation → Distributed algorithms
Keywords
  • Connectivity
  • k-edge connectivity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev. Byzantine connectivity testing in the congested clique. In DISC, volume 246 of LIPIcs, pages 7:1-7:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  2. Marcel Bezdrighin, Michael Elkin, Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhon. Deterministic distributed sparse and ultra-sparse spanners and connectivity certificates. In SPAA, pages 1-10. ACM, 2022. Google Scholar
  3. Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-cliques. Distributed Comput., 24(2):79-89, 2011. Google Scholar
  4. Keren Censor-Hillel and Michal Dory. Fast distributed approximation for TAP and 2-edge-connectivity. Distributed Comput., 33(2):145-168, 2020. Google Scholar
  5. Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast distributed algorithms for testing graph properties. Distributed Comput., 32(1):41-57, 2019. Google Scholar
  6. Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed edge connectivity in sublinear time. In STOC, pages 343-354. ACM, 2019. Google Scholar
  7. Michal Dory. Distributed approximation of minimum k-edge-connected spanning subgraphs. In PODC, pages 149-158. ACM, 2018. Google Scholar
  8. Michal Dory and Mohsen Ghaffari. A nearly time-optimal distributed approximation of minimum cost k-edge-connected spanning subgraph. In SODA, pages 4296-4334. SIAM, 2023. Google Scholar
  9. Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three notes on distributed property testing. In DISC, volume 91 of LIPIcs, pages 15:1-15:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. Google Scholar
  10. Hendrik Fichtenberger and Yadu Vasudev. A two-sided error distributed property tester for conductance. In MFCS, volume 117 of LIPIcs, pages 19:1-19:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Google Scholar
  11. Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin. Distributed testing of distance-k colorings. In SIROCCO, volume 12156 of Lecture Notes in Computer Science, pages 275-290. Springer, 2020. Google Scholar
  12. Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing of excluded subgraphs. In DISC, volume 9888 of Lecture Notes in Computer Science, pages 342-356. Springer, 2016. Google Scholar
  13. Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica, 32(2):302-343, 2002. Google Scholar
  14. Hiro Ito, Shin-Ichi Tanigawa, and Yuichi Yoshida. Constant-time algorithms for sparsity matroids. In International Colloquium on Automata, Languages, and Programming, pages 498-509. Springer, 2012. Google Scholar
  15. David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In SODA, pages 21-30. ACM/SIAM, 1993. Google Scholar
  16. Reut Levi, Moti Medina, and Dana Ron. Property testing of planarity in the CONGEST model. Distributed Comput., 34(1):15-32, 2021. Google Scholar
  17. Y Orenstein. Testing properties of directed graphs. Master’s thesis, School of Electrical Engineering, 2010. Google Scholar
  18. Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. In DISC, volume 146 of LIPIcs, pages 30:1-30:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  19. Shin-Ichi Tanigawa and Yuichi Yoshida. Testing the supermodular-cut condition. Algorithmica, 71(4):1065-1075, 2015. Google Scholar
  20. Ramakrishna Thurimella. Sub-linear distributed algorithms for sparse certificates and biconnected components. J. Algorithms, 23(1):160-179, 1997. Google Scholar
  21. Yuichi Yoshida and Hiro Ito. Testing k-edge-connectivity of digraphs. Journal of systems science and complexity, 23:91-101, 2010. Google Scholar
  22. Yuichi Yoshida and Hiro Ito. Property testing on k-vertex-connectivity of graphs. Algorithmica, 62(3-4):701-712, 2012. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail