We study a variant of the down-up (also known as the Glauber dynamics) and up-down walks over an n-partite simplicial complex, which we call expanderized higher order random walks - where the sequence of updated coordinates correspond to the sequence of vertices visited by a random walk over an auxiliary expander graph H. When H is the clique with self loops on [n], this random walk reduces to the usual down-up walk and when H is the directed cycle on [n], this random walk reduces to the well-known systematic scan Glauber dynamics. We show that whenever the usual higher order random walks satisfy a log-Sobolev inequality or a Poincaré inequality, the expanderized walks satisfy the same inequalities with a loss of quality related to the two-sided expansion of the auxillary graph H. Our construction can be thought as a higher order random walk generalization of the derandomized squaring algorithm of Rozenman and Vadhan (RANDOM 2005). We study the mixing times of our expanderized walks in two example cases: We show that when initiated with an expander graph our expanderized random walks have mixing time (i) O(n log n) for sampling a uniformly random list colorings of a graph G of maximum degree Δ = O(1) where each vertex has at least (11/6 - ε) Δ and at most O(Δ) colors, (ii) O_h((n log n)/(1 - ‖J‖_op)²) for sampling the Ising model with a PSD interaction matrix J ∈ ℝ^{n×n} satisfying ‖J‖_op ≤ 1 and the external field h ∈ ℝⁿ- here the O(•) notation hides a constant that depends linearly on the largest entry of h. As expander graphs can be very sparse, this decreases the amount of randomness required to simulate the down-up walks by a logarithmic factor. We also prove some simple results which enable us to argue about log-Sobolev constants of higher order random walks and provide a simple and self-contained analysis of local-to-global Φ-entropy contraction in simplicial complexes - giving simpler proofs for many pre-existing results.
@InProceedings{alev_et_al:LIPIcs.APPROX/RANDOM.2024.58, author = {Alev, Vedat Levi and Rao, Shravas}, title = {{Expanderizing Higher Order Random Walks}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)}, pages = {58:1--58:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-348-5}, ISSN = {1868-8969}, year = {2024}, volume = {317}, editor = {Kumar, Amit and Ron-Zewi, Noga}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.58}, URN = {urn:nbn:de:0030-drops-210510}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2024.58}, annote = {Keywords: Higher Order Random Walks, Expander Graphs, Glauber Dynamics, Derandomized Squaring, High Dimensional Expansion, Spectral Independence, Entropic Independence} }
Feedback for Dagstuhl Publishing