LIPIcs.APPROX-RANDOM.2024.63.pdf
- Filesize: 0.67 MB
- 13 pages
Let G = (V,E) be a graph on n vertices and let m^*(G) denote the size of a maximum matching in G. We show that for any δ > 0 and for any 1 ≤ k ≤ (1-δ)m^*(G), the down-up walk on matchings of size k in G mixes in time polynomial in n. Previously, polynomial mixing was not known even for graphs with maximum degree Δ, and our result makes progress on a conjecture of Jain, Perkins, Sah, and Sawhney [STOC, 2022] that the down-up walk mixes in optimal time O_{Δ,δ}(nlog{n}). In contrast with recent works analyzing mixing of down-up walks in various settings using the spectral independence framework, we bound the spectral gap by constructing and analyzing a suitable multi-commodity flow. In fact, we present constructions demonstrating the limitations of the spectral independence approach in our setting.
Feedback for Dagstuhl Publishing