LIPIcs.APPROX-RANDOM.2024.69.pdf
- Filesize: 0.91 MB
- 22 pages
We study randomness extractors in AC⁰ and NC¹. For the AC⁰ setting, we give a logspace-uniform construction such that for every k ≥ n/poly log n, ε ≥ 2^{-poly log n}, it can extract from an arbitrary (n, k) source, with a small constant fraction entropy loss, and the seed length is O(log n/(ε)). The seed length and output length are optimal up to constant factors matching the parameters of the best polynomial time construction such as [Guruswami et al., 2009]. The range of k and ε almost meets the lower bound in [Goldreich et al., 2015] and [Cheng and Li, 2018]. We also generalize the main lower bound of [Goldreich et al., 2015] for extractors in AC⁰, showing that when k < n/poly log n, even strong dispersers do not exist in non-uniform AC⁰. For the NC¹ setting, we also give a logspace-uniform extractor construction with seed length O(log n/(ε)) and a small constant fraction entropy loss in the output. It works for every k ≥ O(log² n), ε ≥ 2^{-O(√k)}. Our main techniques include a new error reduction process and a new output stretch process, based on low-depth circuit implementations for mergers, condensers, and somewhere extractors.
Feedback for Dagstuhl Publishing