Approximate Degree Composition for Recursive Functions

Authors Sourav Chakraborty , Chandrima Kayal, Rajat Mittal, Manaswi Paraashar , Nitin Saurabh



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.71.pdf
  • Filesize: 0.85 MB
  • 17 pages

Document Identifiers

Author Details

Sourav Chakraborty
  • Indian Statistical Institute, Kolkata, India
Chandrima Kayal
  • Indian Statistical Institute, Kolkata, India
Rajat Mittal
  • Indian Institute of Technology Kanpur, India
Manaswi Paraashar
  • University of Copenhagen, Denmark
Nitin Saurabh
  • Indian Institute of Technology Hyderabad, India

Cite AsGet BibTex

Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, and Nitin Saurabh. Approximate Degree Composition for Recursive Functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 71:1-71:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71

Abstract

Determining the approximate degree composition for Boolean functions remains a significant unsolved problem in Boolean function complexity. In recent decades, researchers have concentrated on proving that approximate degree composes for special types of inner and outer functions. An important and extensively studied class of functions are the recursive functions, i.e. functions obtained by composing a base function with itself a number of times. Let h^d denote the standard d-fold composition of the base function h. The main result of this work is to show that the approximate degree composes if either of the following conditions holds: - The outer function f:{0,1}ⁿ → {0,1} is a recursive function of the form h^d, with h being any base function and d = Ω(log log n). - The inner function is a recursive function of the form h^d, with h being any constant arity base function (other than AND and OR) and d = Ω(log log n), where n is the arity of the outer function. In terms of proof techniques, we first observe that the lower bound for composition can be obtained by introducing majority in between the inner and the outer functions. We then show that majority can be efficiently eliminated if the inner or outer function is a recursive function.

Subject Classification

ACM Subject Classification
  • Theory of computation
Keywords
  • Approximate degree
  • Boolean function
  • Composition theorem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Aaronson. Impossibility of Succinct Quantum Proofs for Collision-Freeness. Quantum Inf. Comput., 12(1-2):21-28, 2012. URL: https://doi.org/10.26421/QIC12.1-2-3.
  2. S. Aaronson and Y. Shi. Quantum Lower Bounds for the Collision and the Element Distinctness Problems. J. ACM, 51(4):595-605, 2004. URL: https://doi.org/10.1145/1008731.1008735.
  3. E. Allender. A Note on the Power of Threshold Circuits. In FOCS, pages 580-584, 1989. URL: https://doi.org/10.1109/SFCS.1989.63538.
  4. A. Ambainis. Polynomial Degree and Lower Bounds in Quantum Complexity: Collision and Element Distinctness with Small Range. Theory Comput., 1(1):37-46, 2005. URL: https://doi.org/10.4086/toc.2005.v001a003.
  5. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum Lower Bounds by Polynomials. J. ACM, 48(4):778-797, 2001. URL: https://doi.org/10.1145/502090.502097.
  6. R. Beigel. The Polynomial Method in Circuit Complexity. In Proceedings of the Eigth Annual Structure in Complexity Theory Conference, pages 82-95, 1993. Google Scholar
  7. R. Beigel. Perceptrons, PP, and the Polynomial Hierarchy. Comput. Complex., 4:339-349, 1994. URL: https://doi.org/10.1007/BF01263422.
  8. S. Ben-David, A. Bouland, A. Garg, and R. Kothari. Classical Lower Bounds from Quantum Upper Bounds. In FOCS, pages 339-349, 2018. URL: https://doi.org/10.1109/FOCS.2018.00040.
  9. S. Ben-David, P. Hatami, and A. Tal. Low-Sensitivity Functions from Unambiguous Certificates. In ITCS, volume 67, pages 28:1-28:23, 2017. URL: https://doi.org/10.4230/LIPIcs.ITCS.2017.28.
  10. A. Bouland, L. Chen, D. Holden, J. Thaler, and P. N. Vasudevan. On the Power of Statistical Zero Knowledge. In FOCS, pages 708-719, 2017. URL: https://doi.org/10.1109/FOCS.2017.71.
  11. H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust Polynomials and Quantum Algorithms. Theory Comput. Syst., 40(4):379-395, 2007. URL: https://doi.org/10.1007/S00224-006-1313-Z.
  12. H. Buhrman, N. K. Vereshchagin, and R. de Wolf. On Computation and Communication with Small Bias. In CCC, pages 24-32, 2007. URL: https://doi.org/10.1109/CCC.2007.18.
  13. M. Bun and J. Thaler. Dual Lower Bounds for Approximate Degree and Markov-Bernstein Inequalities. In ICALP, volume 7965, pages 303-314, 2013. URL: https://doi.org/10.1007/978-3-642-39206-1_26.
  14. M. Bun and J. Thaler. Approximate Degree in Classical and Quantum Computing. Found. Trends Theor. Comput. Sci., 15(3-4):229-423, 2022. URL: https://doi.org/10.1561/0400000107.
  15. S. Chakraborty, C. Kayal, R. Mittal, M. Paraashar, S. Sanyal, and N. Saurabh. On the Composition of Randomized Query Complexity and Approximate Degree. In APPROX/RANDOM, volume 275, pages 63:1-63:23, 2023. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.63.
  16. Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, and Nitin Saurabh. Approximate Degree Composition for Recursive Functions, 2024. URL: https://arxiv.org/abs/2407.08385.
  17. K. Chandrasekaran, J. Thaler, J. R. Ullman, and A. Wan. Faster Private Release of Marginals on Small Databases. In ITCS, pages 387-402, 2014. URL: https://doi.org/10.1145/2554797.2554833.
  18. L. Chen. Adaptivity vs. Postselection, and Hardness Amplification for Polynomial Approximation. In ISAAC, volume 64 of LIPIcs, pages 26:1-26:12, 2016. URL: https://doi.org/10.4230/LIPICS.ISAAC.2016.26.
  19. J. Gilmer, M. Saks, and S. Srinivasan. Composition Limits and Separating Examples for Some Boolean Function Complexity Measures. Combinatorica, 36(3):265-311, 2016. URL: https://doi.org/10.1007/s00493-014-3189-x.
  20. O. Goldreich. On (Valiant’s) Polynomial-Size Monotone Formula for Majority. In Computational Complexity and Property Testing - On the Interplay Between Randomness and Computation, volume 12050 of Lecture Notes in Computer Science, pages 17-23. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-43662-9_3.
  21. M. Göös and T. S. Jayram. A Composition Theorem for Conical Juntas. In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 5:1-5:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.CCC.2016.5.
  22. T. S. Jayram, R. Kumar, and D. Sivakumar. Two Applications of Information Complexity. In STOC, pages 673-682, 2003. URL: https://doi.org/10.1145/780542.780640.
  23. S. Jukna, A. Razborov, P. Savický, and I. Wegener. On P versus NP ∩ co-NP for Decision trees and Read-Once Branching Programs. Comput. Complex., 8(4):357-370, 1999. Google Scholar
  24. J. Kahn, N. Linial, and A. Samorodnitsky. Inclusion-Exclusion: Exact and Approximate. Comb., 16(4):465-477, 1996. URL: https://doi.org/10.1007/BF01271266.
  25. A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. Agnostically Learning Halfspaces. SIAM J. Comput., 37(6):1777-1805, 2008. URL: https://doi.org/10.1137/060649057.
  26. P. Kamath and P. Vasudevan. Approximate Degree of AND-OR trees, 2014. URL: https://www.scottaaronson.com/showcase3/kamath-pritish-vasudevan-prashant.pdf.
  27. A. Klivans, R. O'Donnell, and R. Servedio. Learning Intersections and Thresholds of Halfspaces. J. Comput. Syst. Sci., 68(4):808-840, 2004. URL: https://doi.org/10.1016/J.JCSS.2003.11.002.
  28. A. Klivans and R. Servedio. Learning DNF in time 2^o(n^1/3). J. Comput. Syst. Sci., 68(2):303-318, 2004. URL: https://doi.org/10.1016/J.JCSS.2003.07.007.
  29. A. Klivans and R. Servedio. Toward Attribute Efficient Learning of Decision Lists and Parities. J. Mach. Learn. Res., 7:587-602, 2006. URL: http://jmlr.org/papers/v7/klivans06a.html.
  30. T. Lee. A Note on the Sign Degree of Formulas. CoRR, abs/0909.4607, 2009. URL: https://arxiv.org/abs/0909.4607.
  31. N. Leonardos. An Improved Lower Bound for the Randomized Decision Tree Complexity of Recursive Majority. In ICALP, volume 7965, pages 696-708, 2013. URL: https://doi.org/10.1007/978-3-642-39206-1_59.
  32. F. Magniez, A. Nayak, M. Santha, J. Sherman, G. Tardos, and D. Xiao. Improved Bounds for the Randomized Decision tree Complexity of Recursive Majority. Random Struct. Algorithms, 48(3):612-638, 2016. URL: https://doi.org/10.1002/rsa.20598.
  33. N. Nisan and M. Szegedy. On the Degree of Boolean Functions as Real Polynomials. Comput. Complex., 4:301-313, 1994. URL: https://doi.org/10.1007/BF01263419.
  34. N. Nisan and A. Wigderson. On Rank vs. Communication Complexity. Combinatorica, 15(4):557-565, 1995. URL: https://doi.org/10.1007/BF01192527.
  35. B. Reichardt and R. Špalek. Span-Program-Based Quantum Algorithm for Evaluating Formulas. Theory Comput., 8(1):291-319, 2012. URL: https://doi.org/10.4086/TOC.2012.V008A013.
  36. M. Saks and A. Wigderson. Probabilistic Boolean Decision Trees and the Complexity of Evaluating Game Trees. In FOCS, pages 29-38, 1986. URL: https://doi.org/10.1109/SFCS.1986.44.
  37. R. Servedio, L.-Y. Tan, and J. Thaler. Attribute-Efficient Learning and Weight-Degree Tradeoffs for Polynomial Threshold Functions. In COLT, volume 23, pages 14.1-14.19. JMLR.org, 2012. URL: http://proceedings.mlr.press/v23/servedio12/servedio12.pdf.
  38. A. Sherstov. The Pattern Matrix Method. SIAM J. Comput., 40(6):1969-2000, 2011. URL: https://doi.org/10.1137/080733644.
  39. A. Sherstov. Strong Direct Product Theorems for Quantum Communication and Query Complexity. SIAM J. Comput., 41(5):1122-1165, 2012. URL: https://doi.org/10.1137/110842661.
  40. A. Sherstov. Approximating the AND-OR Tree. Theory Comput., 9:653-663, 2013. URL: https://doi.org/10.4086/toc.2013.v009a020.
  41. A. Sherstov. The Intersection of Two Halfspaces has High Threshold Degree. SIAM Journal on Computing, 42(6):2329-2374, 2013. URL: https://doi.org/10.1137/100785260.
  42. A. Sherstov. Making Polynomials Robust to Noise. Theory Comput., 9:593-615, 2013. URL: https://doi.org/10.4086/TOC.2013.V009A018.
  43. A. A. Sherstov. Approximate Inclusion-Exclusion for Arbitrary Symmetric Functions. Comput. Complex., 18(2):219-247, 2009. URL: https://doi.org/10.1007/S00037-009-0274-4.
  44. Y. Shi. Approximating Linear Restrictions of Boolean functions, 2002. Google Scholar
  45. M. Snir. Lower Bounds on Probabilistic Linear Decision Trees. Theoretical Computer Science, 38:69-82, 1985. URL: https://doi.org/10.1016/0304-3975(85)90210-5.
  46. A. Tal. Properties and Applications of Boolean Function Composition. In ITCS, pages 441-454, 2013. URL: https://doi.org/10.1145/2422436.2422485.
  47. J. Thaler, J. R. Ullman, and S. P. Vadhan. Faster Algorithms for Privately Releasing Marginals. In ICALP, volume 7391 of Lecture Notes in Computer Science, pages 810-821. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-31594-7_68.
  48. L. Valiant. Short Monotone Formulae for the Majority Function. Journal of Algorithms, 5(3):363-366, 1984. URL: https://doi.org/10.1016/0196-6774(84)90016-6.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail