Improved Bounds for Graph Distances in Scale Free Percolation and Related Models

Authors Kostas Lakis , Johannes Lengler, Kalina Petrova , Leon Schiller



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.74.pdf
  • Filesize: 0.89 MB
  • 22 pages

Document Identifiers

Author Details

Kostas Lakis
  • ETH Zürich, Department of Computer Science, Zürich, Switzerland
Johannes Lengler
  • ETH Zürich, Department of Computer Science, Zürich, Switzerland
Kalina Petrova
  • ETH Zürich, Department of Computer Science, Zürich, Switzerland
Leon Schiller
  • ETH Zürich, Department of Computer Science, Zürich, Switzerland

Acknowledgements

This research started at the joint workshop of the Combinatorial Structures and Algorithms and Theory of Combinatorial Algorithms groups of ETH Zürich held in Stels, Switzerland, January 2024. We thank the organizers for providing a very pleasant and inspiring working atmosphere.

Cite AsGet BibTex

Kostas Lakis, Johannes Lengler, Kalina Petrova, and Leon Schiller. Improved Bounds for Graph Distances in Scale Free Percolation and Related Models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 74:1-74:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.74

Abstract

In this paper, we study graph distances in the geometric random graph models scale-free percolation SFP, geometric inhomogeneous random graphs GIRG, and hyperbolic random graphs HRG. Despite the wide success of the models, the parameter regime in which graph distances are polylogarithmic is poorly understood. We provide new and improved lower bounds. In a certain portion of the parameter regime, those match the known upper bounds. Compared to the best previous lower bounds by Hao and Heydenreich [Hao and Heydenreich, 2023], our result has several advantages: it gives matching bounds for a larger range of parameters, thus settling the question for a larger portion of the parameter space. It strictly improves the lower bounds of [Hao and Heydenreich, 2023] for all parameters settings in which those bounds were not tight. It gives tail bounds on the probability of having short paths, which imply shape theorems for the k-neighbourhood of a vertex whenever our lower bounds are tight, and tight bounds for the size of this k-neighbourhood. And last but not least, our proof is much simpler and not much longer than two pages, and we demonstrate that it generalizes well by showing that the same technique also works for first passage percolation.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Random graphs
  • Mathematics of computing → Stochastic processes
  • Theory of computation → Random network models
Keywords
  • Mathematics
  • Probability Theory
  • Combinatorics
  • Random Graphs
  • Random Metric Spaces

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohammed Amin Abdullah, Michel Bode, and Nikolaos Fountoulakis. Typical distances in a geometric model for complex networks. Internet Mathematics, 1:38, 2017. Google Scholar
  2. Noam Berger. A lower bound for the chemical distance in sparse long-range percolation models. arXiv preprint, 2004. URL: https://arxiv.org/abs/math/0409021.
  3. Marek Biskup. On the scaling of the chemical distance in long-range percolation models. The Annals of Probability, 32(4):2938-2977, October 2004. URL: https://doi.org/10.1214/009117904000000577.
  4. Marek Biskup. Graph diameter in long-range percolation. Random Structures & Algorithms, 39(2):210-227, 2011. URL: https://doi.org/10.1002/rsa.20349.
  5. Marek Biskup and Jeffrey Lin. Sharp asymptotic for the chemical distance in long-range percolation. Random Structures & Algorithms, 55(3):560-583, 2019. URL: https://doi.org/10.1002/rsa.20849.
  6. Thomas Bläsius and Philipp Fischbeck. On the external validity of average-case analyses of graph algorithms. ACM Transactions on Algorithms, 20(1):1-42, 2024. Google Scholar
  7. Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Anton Krohmer. Hyperbolic embeddings for near-optimal greedy routing. ACM J. Exp. Algorithmics, 25, 2020. URL: https://doi.org/10.1145/3381751.
  8. Thomas Bläsius, Tobias Friedrich, and Christopher Weyand. Efficiently computing maximum flows in scale-free networks. arXiv preprint, 2020. URL: https://arxiv.org/abs/2009.09678.
  9. Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet with hyperbolic mapping. Nature communications, 1(1):62, 2010. Google Scholar
  10. Karl Bringmann, Ralph Keusch, and Johannes Lengler. Average distance in a general class of scale-free networks with underlying geometry. arXiv preprint, 2016. URL: https://arxiv.org/abs/1602.05712.
  11. Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random graphs. Theoretical Computer Science, 760:35-54, 2019. Google Scholar
  12. Karl Bringmann, Ralph Keusch, Johannes Lengler, Yannic Maus, and Anisur R Molla. Greedy routing and the algorithmic small-world phenomenon. Journal of Computer and System Sciences, 125:59-105, 2022. Google Scholar
  13. Shirshendu Chatterjee and Partha S. Dey. Multiple phase transitions in long-range first-passage percolation on square lattices. Communications on Pure and Applied Mathematics, 69(2):203-256, 2016. URL: https://doi.org/10.1002/cpa.21571.
  14. Maria Deijfen, Remco Hofstad, and Gerard Hooghiemstra. Scale-free percolation. Annales de l Institut Henri Poincaré Probabilités et Statistiques, 49:817-838, August 2013. URL: https://doi.org/10.1214/12-AIHP480.
  15. Philippe Deprez, Rajat Subhra Hazra, and Mario V Wüthrich. Inhomogeneous long-range percolation for real-life network modeling. Risks, 3(1):1-23, 2015. Google Scholar
  16. Philippe Deprez and Mario V Wüthrich. Scale-free percolation in continuum space. Communications in Mathematics and Statistics, 7(3):269-308, 2019. Google Scholar
  17. Leslie Ann Goldberg, Joost Jorritsma, Júlia Komjáthy, and John Lapinskas. Increasing efficacy of contact-tracing applications by user referrals and stricter quarantining. Plos one, 16(5):e0250435, 2021. Google Scholar
  18. Mark S Granovetter. The strength of weak ties. American journal of sociology, 78(6):1360-1380, 1973. Google Scholar
  19. Nannan Hao and Markus Heydenreich. Graph distances in scale-free percolation: the logarithmic case. Journal of Applied Probability, 60(1):295-313, 2023. Google Scholar
  20. Joost Jorritsma, Tim Hulshof, and Júlia Komjáthy. Not all interventions are equal for the height of the second peak. Chaos, Solitons & Fractals, 139:109965, 2020. Google Scholar
  21. Christoph Koch and Johannes Lengler. Bootstrap percolation on geometric inhomogeneous random graphs. Internet Mathematics, page 18995, 2021. Google Scholar
  22. Júlia Komjáthy, John Lapinskas, and Johannes Lengler. Penalising transmission to hubs in scale-free spatial random graphs. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 57(4):1968-2016, 2021. URL: https://doi.org/10.1214/21-AIHP1149.
  23. Júlia Komjáthy, John Lapinskas, Johannes Lengler, and Ulysse Schaller. Four universal growth regimes in degree-dependent first passage percolation on spatial random graphs i. arXiv preprint, 2023. URL: https://arxiv.org/abs/2309.11840.
  24. Júlia Komjáthy, John Lapinskas, Johannes Lengler, and Ulysse Schaller. Four universal growth regimes in degree-dependent first passage percolation on spatial random graphs ii. arXiv preprint, 2023. URL: https://arxiv.org/abs/230911880.
  25. Júlia Komjáthy and Bas Lodewijks. Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs. Stochastic Processes and their Applications, 130(3):1309-1367, 2020. URL: https://doi.org/10.1016/j.spa.2019.04.014.
  26. Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná. Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010. Google Scholar
  27. Gergely Ódor, Domonkos Czifra, Júlia Komjáthy, László Lovász, and Márton Karsai. Switchover phenomenon induced by epidemic seeding on geometric networks. Proceedings of the National Academy of Sciences, 118(41):e2112607118, 2021. Google Scholar
  28. David Reimer. Proof of the van den berg–kesten conjecture. Combinatorics, Probability and Computing, 9(1):27-32, 2000. URL: https://doi.org/10.1017/S0963548399004113.
  29. Pieter Trapman. The growth of the infinite long-range percolation cluster. The Annals of Probability, 38(4):1583-1608, 2010. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail