LIPIcs.APPROX-RANDOM.2024.75.pdf
- Filesize: 0.92 MB
- 20 pages
Kaltofen [STOC 1986] gave a randomized algorithm to factor multivariate polynomials given by algebraic circuits. We derandomize the algorithm in some special cases. For an n-variate polynomial f of degree d from a class 𝒞 of algebraic circuits, we design a deterministic algorithm to find all its irreducible factors of degree ≤ δ, for constant δ. The running time of this algorithm stems from a deterministic PIT algorithm for class 𝒞 and a deterministic algorithm that tests divisibility of f by a polynomial of degree ≤ δ. By using the PIT algorithm for constant-depth circuits by Limaye, Srinivasan and Tavenas [FOCS 2021] and the divisibility results by Forbes [FOCS 2015], this generalizes and simplifies a recent result by Kumar, Ramanathan and Saptharishi [SODA 2024]. They designed a subexponential-time algorithm that, given a blackbox access to f computed by a constant-depth circuit, outputs its irreducible factors of degree ≤ δ. When the input f is sparse, the time complexity of our algorithm depends on a whitebox PIT algorithm for ∑_i m_i g_i^{d_i}, where m_i are monomials and deg(g_i) ≤ δ. All the previous algorithms required a blackbox PIT algorithm for the same class. Our second main result considers polynomials f, where each irreducible factor has degree at most δ. We show that all the irreducible factors with their multiplicities can be computed in polynomial time with blackbox access to f. Finally, we consider factorization of sparse polynomials. We show that in order to compute all the sparse irreducible factors efficiently, it suffices to derandomize irreducibility preserving bivariate projections for sparse polynomials.
Feedback for Dagstuhl Publishing