Presenting Morphisms of Distributive Laws

Authors Bartek Klin, Beata Nachyla

Thumbnail PDF


  • Filesize: 499 kB
  • 15 pages

Document Identifiers

Author Details

Bartek Klin
Beata Nachyla

Cite AsGet BibTex

Bartek Klin and Beata Nachyla. Presenting Morphisms of Distributive Laws. In 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 35, pp. 190-204, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


A format for well-behaved translations between structural operational specifications is derived from a notion of distributive law morphism, previously studied by Power and Watanabe.
  • coalgebra
  • bialgebra
  • distributive law
  • structural operational semantics


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J. A. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 197-292. Elsevier, 2002. Google Scholar
  2. F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD dissertation, CWI, Amsterdam, 2004. Google Scholar
  3. B. Bloom, S. Istrail, and A. Meyer. Bisimulation can't be traced. Journal of the ACM, 42:232-268, 1995. Google Scholar
  4. M. Bonsangue, H. H. Hansen, A. Kurz, and J. Rot. Presenting distributive laws. In Procs. CALCO'13, volume 8089 of LNCS, pages 95-109, 2013. Google Scholar
  5. M. Hennessy, W. Li, and G. D. Plotkin. A first attempt at translating CSP into CCS. In Proc. Second International Conference on Distributed Systems, pages 105-115, 1981. Google Scholar
  6. B. Klin. Bialgebraic methods and modal logic in structural operational semantics. Information and Computation, 207:237-257, 2009. Google Scholar
  7. B. Klin. Bialgebras for structural operational semantics: An introduction. Theoretical Computer Science, 412(38):5043-5069, 2011. CMCS Tenth Anniversary Meeting. Google Scholar
  8. B. Klin and B. Nachyła. Distributive laws and decidable properties of SOS specifications. In Procs. EXPRESS/SOS'14, volume 160 of ENTCS, pages 79-93, 2014. Google Scholar
  9. M. Lenisa, J. Power, and H. Watanabe. Category theory for operational semantics. Theoretical Computer Science, 327(1-2):135-154, 2004. Google Scholar
  10. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic Programming, 60-61:17-139, 2004. Google Scholar
  11. J. Power and H. Watanabe. Combining a monad and a comonad. Theor. Comput. Sci., 280:137-162, 2002. Google Scholar
  12. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3-80, 2000. Google Scholar
  13. D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In Proc. LICS'97, pages 280-291. IEEE Computer Society Press, 1997. Google Scholar
  14. H. Watanabe. Well-behaved translations between structural operational semantics. ENTCS, 65, 2002. Google Scholar