We define a novel notion of "non-backtracking" matrix associated to any symmetric matrix, and we prove a "Ihara-Bass" type formula for it. We use this theory to prove new results on polynomial-time strong refutations of random constraint satisfaction problems with k variables per constraints (k-CSPs). For a random k-CSP instance constructed out of a constraint that is satisfied by a p fraction of assignments, if the instance contains n variables and n^{k/2} / ε² constraints, we can efficiently compute a certificate that the optimum satisfies at most a p+O_k(ε) fraction of constraints. Previously, this was known for even k, but for odd k one needed n^{k/2} (log n)^{O(1)} / ε² random constraints to achieve the same conclusion. Although the improvement is only polylogarithmic, it overcomes a significant barrier to these types of results. Strong refutation results based on current approaches construct a certificate that a certain matrix associated to the k-CSP instance is quasirandom. Such certificate can come from a Feige-Ofek type argument, from an application of Grothendieck’s inequality, or from a spectral bound obtained with a trace argument. The first two approaches require a union bound that cannot work when the number of constraints is o(n^⌈k/2⌉) and the third one cannot work when the number of constraints is o(n^{k/2} √{log n}). We further apply our techniques to obtain a new PTAS finding assignments for k-CSP instances with n^{k/2} / ε² constraints in the semi-random settings where the constraints are random, but the sign patterns are adversarial.
@InProceedings{dorsi_et_al:LIPIcs.CCC.2023.27, author = {d'Orsi, Tommaso and Trevisan, Luca}, title = {{A Ihara-Bass Formula for Non-Boolean Matrices and Strong Refutations of Random CSPs}}, booktitle = {38th Computational Complexity Conference (CCC 2023)}, pages = {27:1--27:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-282-2}, ISSN = {1868-8969}, year = {2023}, volume = {264}, editor = {Ta-Shma, Amnon}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.27}, URN = {urn:nbn:de:0030-drops-182979}, doi = {10.4230/LIPIcs.CCC.2023.27}, annote = {Keywords: CSP, k-XOR, strong refutation, sum-of-squares, tensor, graph, hypergraph, non-backtracking walk} }
Feedback for Dagstuhl Publishing