We establish new separations between the power of monotone and general (non-monotone) Boolean circuits: - For every k ≥ 1, there is a monotone function in AC⁰ (constant-depth poly-size circuits) that requires monotone circuits of depth Ω(log^k n). This significantly extends a classical result of Okol'nishnikova [Okol'nishnikova, 1982] and Ajtai and Gurevich [Ajtai and Gurevich, 1987]. In addition, our separation holds for a monotone graph property, which was unknown even in the context of AC⁰ versus mAC⁰. - For every k ≥ 1, there is a monotone function in AC⁰[⊕] (constant-depth poly-size circuits extended with parity gates) that requires monotone circuits of size exp(Ω(log^k n)). This makes progress towards a question posed by Grigni and Sipser [Grigni and Sipser, 1992]. These results show that constant-depth circuits can be more efficient than monotone formulas and monotone circuits when computing monotone functions. In the opposite direction, we observe that non-trivial simulations are possible in the absence of parity gates: every monotone function computed by an AC⁰ circuit of size s and depth d can be computed by a monotone circuit of size 2^{n - n/O(log s)^{d-1}}. We show that the existence of significantly faster monotone simulations would lead to breakthrough circuit lower bounds. In particular, if every monotone function in AC⁰ admits a polynomial size monotone circuit, then NC² is not contained in NC¹. Finally, we revisit our separation result against monotone circuit size and investigate the limits of our approach, which is based on a monotone lower bound for constraint satisfaction problems (CSPs) established by Göös, Kamath, Robere and Sokolov [Göös et al., 2019] via lifting techniques. Adapting results of Schaefer [Thomas J. Schaefer, 1978] and Allender, Bauland, Immerman, Schnoor and Vollmer [Eric Allender et al., 2009], we obtain an unconditional classification of the monotone circuit complexity of Boolean-valued CSPs via their polymorphisms. This result and the consequences we derive from it might be of independent interest.
@InProceedings{cavalar_et_al:LIPIcs.CCC.2023.29, author = {Cavalar, Bruno P. and Oliveira, Igor C.}, title = {{Constant-Depth Circuits vs. Monotone Circuits}}, booktitle = {38th Computational Complexity Conference (CCC 2023)}, pages = {29:1--29:37}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-282-2}, ISSN = {1868-8969}, year = {2023}, volume = {264}, editor = {Ta-Shma, Amnon}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.29}, URN = {urn:nbn:de:0030-drops-182998}, doi = {10.4230/LIPIcs.CCC.2023.29}, annote = {Keywords: circuit complexity, monotone circuit complexity, bounded-depth circuis, constraint-satisfaction problems} }
Feedback for Dagstuhl Publishing