Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Authors Peter Bürgisser , Mahmut Levent Doğan , Visu Makam , Michael Walter , Avi Wigderson



PDF
Thumbnail PDF

File

LIPIcs.CCC.2024.14.pdf
  • Filesize: 1.15 MB
  • 48 pages

Document Identifiers

Author Details

Peter Bürgisser
  • Institute of Mathematics, Technische Universität Berlin, Germany
Mahmut Levent Doğan
  • Institute of Mathematics, Technische Universität Berlin, Germany
Visu Makam
  • Radix Trading, Amsterdam, The Netherlands
Michael Walter
  • Faculty of Computer Science, Ruhr-Universität Bochum, Germany
Avi Wigderson
  • School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA

Acknowledgements

The authors thank Matías Bender, Alperen A. Ergür, Jonathan Leake, and Philipp Reichenbach for productive discussions.

Cite AsGet BibTex

Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 14:1-14:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CCC.2024.14

Abstract

When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These are natural algorithmic problems, as symmetries are central in numerous questions and structures in physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to understand their computational complexity. Recently, Bürgisser et al. (2021) gave the first polynomial-time algorithms for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean space. In this work, motivated by theoretical and practical applications, we study the computational complexity of robust generalizations of these orbit problems, which amount to approximating the distance of orbits in ℂⁿ up to a factor γ ≥ 1. In particular, this allows deciding whether two inputs are approximately in the same orbit or far from being so. On the one hand, we prove the NP-hardness of this problem for γ = n^Ω(1/log log n) by reducing the closest vector problem for lattices to it. On the other hand, we describe algorithms for solving this problem for an approximation factor γ = exp(poly(n)). Our algorithms combine tools from invariant theory and algorithmic lattice theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if a version of the famous number-theoretic abc-conjecture holds - establishing a new and surprising connection between computational complexity and number theory.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Algebraic algorithms
  • Computing methodologies → Combinatorial algorithms
  • Theory of computation → Algebraic complexity theory
Keywords
  • computational invariant theory
  • geometric complexity theory
  • orbit problems
  • abc-conjecture
  • closest vector problem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics, 160(2):781-793, 2004. Google Scholar
  2. Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. J. ACM, 52(5):749-765, September 2005. URL: https://doi.org/10.1145/1089023.1089025.
  3. Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing. In STOC'18 - Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 172-181. ACM, New York, 2018. URL: https://doi.org/10.1145/3188745.3188942.
  4. Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, and Anna Seigal. Invariant theory and scaling algorithms for maximum likelihood estimation. SIAM J. Appl. Algebra Geom., 5(2):304-337, 2021. URL: https://doi.org/10.1137/20M1328932.
  5. Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, and Anna Seigal. Toric invariant theory for maximum likelihood estimation in log-linear models. Algebraic Statistics, 12(2):187-211, 2021. Google Scholar
  6. Michele Audin. Torus actions on symplectic manifolds, volume 93 of Progress in Mathematics. Birkhäuser Basel, 2012. Google Scholar
  7. Alan Baker. Experiments on the abc-conjecture. Publicationes Mathematicae, 65, November 2004. Google Scholar
  8. Alan Baker. Logarithmic forms and the abc-conjecture. In Number Theory: Diophantine, Computational and Algebraic Aspects. Proceedings of the International Conference held in Eger, Hungary, July 29-August 2, 1996, pages 37-44. De Gruyter, 2011. URL: https://doi.org/doi:10.1515/9783110809794.37.
  9. Alan Baker and Gisbert Wüstholz. Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs. Cambridge University Press, 2008. URL: https://doi.org/10.1017/CBO9780511542862.
  10. Markus Bläser, Christian Ikenmeyer, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf Schreyer. Variety membership testing, algebraic natural proofs, and geometric complexity theory. arXiv:1911.02534, 2020. Google Scholar
  11. Enrico Bombieri and Walter Gubler. Heights in Diophantine Geometry. New Mathematical Monographs. Cambridge University Press, 2006. URL: https://doi.org/10.1017/CBO9780511542879.
  12. Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM : a study in analytic number theory and computational complexity. Canadian Mathematical Society series of monographs and advanced texts. Wiley, New York, 1987. Google Scholar
  13. Jonathan M. Borwein and Peter B. Borwein. On the complexity of familiar functions and numbers. SIAM Rev., 30(4):589-601, 1988. URL: https://doi.org/10.1137/1030134.
  14. Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial on geometric programming. Optimization and Engineering, 8(1):67-127, March 2007. URL: https://doi.org/10.1007/s11081-007-9001-7.
  15. Peter Bürgisser, Matthias Christandl, Ketan Mulmuley, and Michael Walter. Membership in moment polytopes is in NP and coNP. SIAM J. Comput., 46(3):972-991, 2017. URL: https://doi.org/10.1137/15M1048859.
  16. Peter Bürgisser, Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Polynomial Time Algorithms in Invariant Theory for Torus Actions. In Valentine Kabanets, editor, 36th Computational Complexity Conference (CCC 2021), volume 200 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1-32:30, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CCC.2021.32.
  17. Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter, and Avi Wigderson. Towards a theory of non-commutative optimization: geodesic first and second order methods for moment maps and polytopes. In 60th Annual IEEE Symposium on Foundations of Computer Science - FOCS 2019, pages 845-861. IEEE Computer Soc., Los Alamitos, CA, 2019. URL: https://arxiv.org/abs/1910.12375.
  18. Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In 59th Annual IEEE Symposium on Foundations of Computer Science - FOCS 2018, pages 883-897. IEEE Computer Soc., Los Alamitos, CA, 2018. URL: https://doi.org/10.1109/FOCS.2018.00088.
  19. Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory. In 9th Innovations in Theoretical Computer Science, volume 94 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 24, 20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Google Scholar
  20. Peter Bürgisser, Yinan Li, Harold Nieuwboer, and Michael Walter. Interior-point methods for unconstrained geometric programming and scaling problems. arXiv:2008.12110, 2020. Google Scholar
  21. Giuseppe C. Calafiore, Stephane Gaubert, and Corrado Possieri. Log-sum-exp neural networks and posynomial models for convex and log-log-convex data. IEEE Transactions on Neural Networks and Learning Systems, 31(3):827-838, 2020. URL: https://doi.org/10.1109/TNNLS.2019.2910417.
  22. Giuseppe C. Calafiore, Stephane Gaubert, and Corrado Possieri. A universal approximation result for difference of log-sum-exp neural networks. IEEE Transactions on Neural Networks and Learning Systems, 31(12):5603-5612, 2020. URL: https://doi.org/10.1109/TNNLS.2020.2975051.
  23. John H. Conway and Neil J. A. Sloane. Low-dimensional lattices v. integral coordinates for integral lattices. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 426(1871):211-232, 1989. URL: http://www.jstor.org/stable/2398341.
  24. Harm Derksen and Gregor Kemper. Computational Invariant Theory. BV035421342 Encyclopaedia of Mathematical Sciences volume 130. Springer, Heidelberg ; New York ; Dordrecht ; London, second enlarged edition with two appendices by vladimir l. popov, and an addendum by norbert a. campo and vladimir l. popov edition, 2015. Google Scholar
  25. Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-invariants. Adv. Math., 310:44-63, 2017. URL: https://doi.org/10.1016/j.aim.2017.01.018.
  26. Harm Derksen and Visu Makam. Algorithms for orbit closure separation for invariants and semi-invariants of matrices. Algebra Number Theory, 14(10):2791-2813, 2020. URL: https://doi.org/10.2140/ant.2020.14.2791.
  27. Harm Derksen and Visu Makam. Maximum likelihood estimation for matrix normal models via quiver representations. SIAM Journal on Applied Algebra and Geometry, 5(2):338-365, 2021. Google Scholar
  28. Harm Derksen, Visu Makam, and Michael Walter. Maximum likelihood estimation for tensor normal models via castling transforms. In Forum of Mathematics, Sigma, volume 10, page e50. Cambridge University Press, 2022. Google Scholar
  29. Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within-almost polynomial factors is NP-hard. Combinatorica, 23(2):205-243, April 2003. URL: https://doi.org/10.1007/s00493-003-0019-y.
  30. Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis. A note on the complexity of comparing succinctly represented integers, with an application to maximum probability parsing. ACM Trans. Comput. Theory, 6(2), May 2014. URL: https://doi.org/10.1145/2601327.
  31. Michael A. Forbes and Amir Shpilka. Explicit Noether normalization for simultaneous conjugation via polynomial identity testing. In Approximation, randomization, and combinatorial optimization, volume 8096 of Lecture Notes in Comput. Sci., pages 527-542. Springer, Heidelberg, 2013. URL: https://doi.org/10.1007/978-3-642-40328-6_37.
  32. Cole Franks, Rafael Oliveira, Akshay Ramachandran, and Michael Walter. Near optimal sample complexity for matrix and tensor normal models via geodesic convexity. arXiv preprint, 2021. URL: https://arxiv.org/abs/2110.07583.
  33. Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic polynomial time algorithm for non-commutative rational identity testing. In 57th Annual IEEE Symposium on Foundations of Computer Science - FOCS 2016, pages 109-117. IEEE Computer Soc., Los Alamitos, CA, 2016. URL: https://doi.org/10.1109/FOCS.2016.95.
  34. Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Operator scaling: theory and applications. Found. Comput. Math., 20(2):223-290, 2020. URL: https://doi.org/10.1007/s10208-019-09417-z.
  35. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC '09, pages 169-178, New York, NY, USA, 2009. Association for Computing Machinery. URL: https://doi.org/10.1145/1536414.1536440.
  36. Dorian Goldfeld. Beyond the last theorem. Math Horizons, 4(1):26-34, 1996. URL: https://doi.org/10.1080/10724117.1996.11974985.
  37. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction problems. In Burton S. Kaliski, editor, Advances in Cryptology - CRYPTO '97, pages 112-131, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. Google Scholar
  38. Andrew Granville and Thomas Tucker. It’s as easy as abc. Notices of the American Mathematical Society, 49, January 2002. Google Scholar
  39. Victor Guillemin and Shlomo Sternberg. Symplectic techniques in physics. Cambridge Univ. Press, Cambridge u.a., 1. publ., reprint. edition, 1986. Google Scholar
  40. Leonid Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sci., 69(3):448-484, 2004. URL: https://doi.org/10.1016/j.jcss.2004.06.003.
  41. Marshall Hall. Integral matrices a for which AA^T = mI. Number Theory and Algebra, pages 119-134, 1977. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887022329&partnerID=40&md5=5f91330ec7e4ddf22586cd2717a71b3a.
  42. Marshall Hall. Combinatorial completions. In Advances in Graph Theory, volume 3 of Annals of Discrete Mathematics, pages 111-123. Elsevier, 1978. URL: https://doi.org/10.1016/S0167-5060(08)70501-6.
  43. Masaki Hamada and Hiroshi Hirai. Computing the nc-rank via discrete convex optimization on cat(0) spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):455-478, 2021. URL: https://doi.org/10.1137/20M138836X.
  44. Godfrey H. Hardy and Edward M. Wright. An introduction to the theory of numbers. Oxford University Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles. Google Scholar
  45. Charles J. Himmelberg. Pseudo-metrizability of quotient spaces. Fund. Math., pages 1-6, 1968. Google Scholar
  46. Warren Hoburg, Philippe Kirschen, and Pieter Abbeel. Data fitting with geometric-programming-compatible softmax functions. Optimization and Engineering, 17(4):897-918, December 2016. URL: https://doi.org/10.1007/s11081-016-9332-3.
  47. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267-288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. Google Scholar
  48. Jeffrey Hoffstein and Joseph Silverman. Optimizations for ntru. In Kazimierz Alster, Jerzy Urbanowicz, and Hugh C. Williams, editors, Proceedings of the International Conference organized by the Stefan Banach International Mathematical Center Warsaw, Poland, September 11-15, 2000, pages 77-88, Berlin, New York, 2001. De Gruyter. URL: https://doi.org/doi:10.1515/9783110881035.77.
  49. Gábor Ivanyos and Youming Qiao. On the orbit closure intersection problems for matrix tuples under conjugation and left-right actions, pages 4115-4126. Society for Industrial and Applied Mathematics, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch158.
  50. Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative Edmonds' problem and matrix semi-invariants. Comput. Complexity, 26(3):717-763, 2017. URL: https://doi.org/10.1007/s00037-016-0143-x.
  51. Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-commutative rank computation is in deterministic polynomial time. Comput. Complexity, 27(4):561-593, 2018. URL: https://doi.org/10.1007/s00037-018-0165-7.
  52. Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13(1-2):1-46, 2004. URL: https://doi.org/10.1007/s00037-004-0182-6.
  53. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research, 12(3):415-440, 1987. URL: http://www.jstor.org/stable/3689974.
  54. Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499-507, 1979. URL: https://doi.org/10.1137/0208040.
  55. George Kempf and Linda Ness. The length of vectors in representation spaces. In Knud Lønsted, editor, Algebraic Geometry, pages 233-243, Berlin, Heidelberg, 1979. Springer Berlin Heidelberg. Google Scholar
  56. Pascal Koiran. Hilbert’s Nullstellensatz is in the Polynomial Hierarchy. Journal of Complexity, 12(4):273-286, 1996. URL: https://doi.org/10.1006/jcom.1996.0019.
  57. Joseph P. S. Kung and Gian-Carlo Rota. The invariant theory of binary forms. Bull. Amer. Math. Soc. (N.S.), 10(1):27-85, 1984. URL: https://doi.org/10.1090/S0273-0979-1984-15188-7.
  58. Greg Kuperberg. Knottedness is in NP, modulo GRH. Advances in Mathematics, 256:493-506, 2014. URL: https://doi.org/10.1016/j.aim.2014.01.007.
  59. Serge Lang. Elliptic Curves: Diophantine Analysis, volume 231 of Grundlehren der mathematischen Wissenschaften. Springer, 2013. Google Scholar
  60. Jonathan Leake and Nisheeth K. Vishnoi. On the computability of continuous maximum entropy distributions with applications. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 930-943, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3357713.3384302.
  61. Arjen K. Lenstra, Hendrik. W. Lenstra, and László Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515-534, December 1982. URL: https://doi.org/10.1007/BF01457454.
  62. Seymour Lipschutz. Schaum’s outline of theory and problems of linear algebra : [including 600 solved problems; completely solved in detail]. Schaum’s outline series. McGraw-Hill, New York u.a., 6th ed. edition, 1974. Google Scholar
  63. Visu Makam and Avi Wigderson. Singular tuples of matrices is not a null cone (and the symmetries of algebraic varieties). J. Reine Angew. Math., 780:79-131, 2021. URL: https://doi.org/10.1515/crelle-2021-0044.
  64. Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. Tropical geometry and machine learning. Proceedings of the IEEE, 109(5):728-755, 2021. URL: https://doi.org/10.1109/JPROC.2021.3065238.
  65. Jerrold Marsden and Alan Weinstein. Reduction of symplectic manifolds with symmetry. Reports on Mathematical Physics, 5(1):121-130, 1974. URL: https://doi.org/10.1016/0034-4877(74)90021-4.
  66. E. M. Matveev. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. Izvestiya: Mathematics, 62(4):723, August 1998. URL: https://doi.org/10.1070/IM1998v062n04ABEH000190.
  67. Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems : a cryptographic perspective. The Kluwer international series in engineering and computer science BV000632170 671. Kluwer Academic, Boston, 2002. Google Scholar
  68. Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences, 13(3):300-317, 1976. URL: https://doi.org/10.1016/S0022-0000(76)80043-8.
  69. Louis J. Mordell. On the representation of a binary quadratic form as a sum of squares of linear forms. Mathematische Zeitschrift, 35(1-15):1432-1823, 1932. URL: https://doi.org/10.1007/BF01186544.
  70. Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normalization. J. Amer. Math. Soc., 30(1):225-309, 2017. URL: https://doi.org/10.1090/jams/864.
  71. Ketan Mulmuley and Milind Sohoni. Geometric complexity theory I: An approach to the P vs. NP and related problems. SIAM Journal on Computing, 31(2):496-526, 2001. Google Scholar
  72. David Mumford. The red book of varieties and schemes, volume 1358 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. URL: https://doi.org/10.1007/b62130.
  73. David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994. URL: https://doi.org/10.1007/978-3-642-57916-5.
  74. Arkadi Nemirovski and Uriel Rothblum. On complexity of matrix scaling. Linear Algebra and its Applications, 302-303:435-460, 1999. URL: https://doi.org/10.1016/S0024-3795(99)00212-8.
  75. Joseph Oesterlé. Nouvelles approches du théorème de Fermat. In Séminaire Bourbaki : volume 1987/88, exposés 686-699, number 161-162 in Astérisque. Société mathématique de France, 1988. talk:694. URL: http://www.numdam.org/item/SB_1987-1988__30__165_0/.
  76. Victor Y. Pan and Zhao Q. Chen. The complexity of the matrix eigenproblem. In Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), pages 507-516. ACM, New York, 1999. URL: https://doi.org/10.1145/301250.301389.
  77. Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Communications on Pure and Applied Mathematics, 39(S1):S239-S256, 1986. URL: https://doi.org/10.1002/cpa.3160390713.
  78. J. Maurice Rojas. Counting Real Roots in Polynomial-Time via Diophantine Approximation. Foundations of Computational Mathematics, 24(2):639-681, Apr 2024. URL: https://doi.org/10.1007/s10208-022-09599-z.
  79. Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics and optimization. Wiley, Chichester u.a., reprinted edition, 1999. Google Scholar
  80. Mohit Singh and Nisheeth K. Vishnoi. Entropy, optimization and counting. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC '14, pages 50-59, New York, NY, USA, 2014. Association for Computing Machinery. URL: https://doi.org/10.1145/2591796.2591803.
  81. Cameron L. Stewart and R. Tijdeman. On the Oesterlé-Masser conjecture. Monatshefte für Mathematik, 102(3):251-257, September 1986. URL: https://doi.org/10.1007/BF01294603.
  82. Cameron L. Stewart and Kunrui Yu. On the abc conjecture. Mathematische Annalen, 291(2):225-230, 1991. URL: http://eudml.org/doc/164860.
  83. Damian Straszak and Nisheeth K. Vishnoi. Maximum entropy distributions: Bit complexity and stability. In Alina Beygelzimer and Daniel Hsu 0001, editors, Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine Learning Research, pages 2861-2891. PMLR, 2019. URL: http://proceedings.mlr.press/v99/straszak19a.html.
  84. Bernd Sturmfels. Algorithms in Invariant Theory. Texts & Monographs in Symbolic Computation. Springer, 2008. URL: https://doi.org/10.1007/978-3-211-77417-5.
  85. Alfred J. van der Poorten. On Baker’s inequality for linear forms in logarithms. Mathematical Proceedings of the Cambdridge Philosophical Society, 80(2):233-248, 1976. URL: https://doi.org/10.1017/S0305004100052877.
  86. Michel Waldschmidt. Diophantine approximation on linear algebraic groups: Transcendence properties of the exponential function in several variables. Grundlehren der mathematischen Wissenschaften BV000000395 326. Springer, Berlin u.a., 2000. Google Scholar
  87. Michel Waldschmidt. Open diophantine problems. Mosc. Math. J., 4:245-305, 2004. Google Scholar
  88. Michel Waldschmidt. Lecture on the abc conjecture and some of its consequences. In Pierre Cartier, A.D.R. Choudary, and Michel Waldschmidt, editors, Mathematics in the 21st Century, pages 211-230, Basel, 2015. Springer Basel. Google Scholar
  89. Gisbert Wüstholz and Alan Baker. Logarithmic forms and group varieties. Journal für die reine und angewandte Mathematik, 442:19-62, 1993. URL: http://eudml.org/doc/153550.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail