LIPIcs.CONCUR.2022.6.pdf
- Filesize: 0.81 MB
- 18 pages
In this paper we investigate the equational theory of (the restriction, relabelling, and recursion free fragment of) CCS modulo rooted branching bisimilarity, which is a classic, bisimulation-based notion of equivalence that abstracts from internal computational steps in process behaviour. Firstly, we show that CCS is not finitely based modulo the considered congruence. As a key step of independent interest in the proof of that negative result, we prove that each CCS process has a unique parallel decomposition into indecomposable processes modulo branching bisimilarity. As a second main contribution, we show that, when the set of actions is finite, rooted branching bisimilarity has a finite equational basis over CCS enriched with the left merge and communication merge operators from ACP.
Feedback for Dagstuhl Publishing