A set of configurations H is a home-space for a set of configurations X of a Petri net if every configuration reachable from (any configuration in) X can reach (some configuration in) H. The semilinear home-space problem for Petri nets asks, given a Petri net and semilinear sets of configurations X, H, if H is a home-space for X. In 1989, David de Frutos Escrig and Colette Johnen proved that the problem is decidable when X is a singleton and H is a finite union of linear sets with the same periods. In this paper, we show that the general (semilinear) problem is decidable. This result is obtained by proving a duality between the reachability problem and the non-home-space problem. In particular, we prove that for any Petri net and any linear set of configurations L we can effectively compute a semilinear set C of configurations, called a non-reachability core for L, such that for every set X the set L is not a home-space for X if, and only if, C is reachable from X. We show that the established relation to the reachability problem yields the Ackermann-completeness of the (semilinear) home-space problem. For this we also show that, given a Petri net with an initial marking, the set of minimal reachable markings can be constructed in Ackermannian time.
@InProceedings{jancar_et_al:LIPIcs.CONCUR.2023.36, author = {Jan\v{c}ar, Petr and Leroux, J\'{e}r\^{o}me}, title = {{The Semilinear Home-Space Problem Is Ackermann-Complete for Petri Nets}}, booktitle = {34th International Conference on Concurrency Theory (CONCUR 2023)}, pages = {36:1--36:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-299-0}, ISSN = {1868-8969}, year = {2023}, volume = {279}, editor = {P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.36}, URN = {urn:nbn:de:0030-drops-190300}, doi = {10.4230/LIPIcs.CONCUR.2023.36}, annote = {Keywords: Petri nets, home-space property, semilinear sets, Ackermannian complexity} }
Feedback for Dagstuhl Publishing