Regular Games with Imperfect Information Are Not That Regular

Authors Laurent Doyen , Thomas Soullard



PDF
Thumbnail PDF

File

LIPIcs.CONCUR.2024.23.pdf
  • Filesize: 0.94 MB
  • 19 pages

Document Identifiers

Author Details

Laurent Doyen
  • CNRS & LMF, ENS Paris-Saclay, France
Thomas Soullard
  • LMF, ENS Paris-Saclay & CNRS, France

Cite AsGet BibTex

Laurent Doyen and Thomas Soullard. Regular Games with Imperfect Information Are Not That Regular. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CONCUR.2024.23

Abstract

We consider two-player games with imperfect information and the synthesis of a randomized strategy for one player that ensures the objective is satisfied almost-surely (i.e., with probability 1), regardless of the strategy of the other player. Imperfect information is modeled by an indistinguishability relation describing the pairs of histories that the first player cannot distinguish, a generalization of the traditional model with partial observations. The game is regular if it admits a regular function whose kernel commutes with the indistinguishability relation. The synthesis of pure strategies that ensure all possible outcomes satisfy the objective is possible in regular games, by a generic reduction that holds for all objectives. While the solution for pure strategies extends to randomized strategies in the traditional model with partial observations (which is always regular), a similar reduction does not exist in the more general model. Despite that, we show that in regular games with Büchi objectives the synthesis problem is decidable for randomized strategies that ensure the outcome satisfies the objective almost-surely.

Subject Classification

ACM Subject Classification
  • Theory of computation → Logic and verification
  • Theory of computation → Probabilistic computation
Keywords
  • Imperfect-information games
  • randomized strategies
  • synthesis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted automata? Inf. Comput., 282:104651, 2022. URL: https://doi.org/10.1016/j.ic.2020.104651.
  2. Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating refinement relations. In Davide Sangiorgi and Robert de Simone, editors, CONCUR '98: Concurrency Theory, 9th International Conference, Nice, France, September 8-11, 1998, Proceedings, volume 1466 of Lecture Notes in Computer Science, pages 163-178. Springer, 1998. URL: https://doi.org/10.1007/BFb0055622.
  3. Krzystof R. Apt and Erich Grädel, editors. Lectures in Game Theory for Computer Scientists. Cambridge University Press, 2011. URL: http://www.cambridge.org/gb/knowledge/isbn/item5760379.
  4. Christel. Baier, Marcus Größer, and Nathalie Bertrand. Probabilistic ω-automata. J. ACM, 59(1):1, 2012. URL: https://doi.org/10.1145/2108242.2108243.
  5. Chitta Baral, Thomas Bolander, Hans van Ditmarsch, and Sheila A. McIlraith. Epistemic planning (Dagstuhl seminar 17231). Dagstuhl Reports, 7(6):1-47, 2017. URL: https://doi.org/10.4230/DagRep.7.6.1.
  6. Dietmar Berwanger and Laurent Doyen. Observation and distinction. representing information in infinite games. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 48:1-48:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.48.
  7. Dietmar Berwanger, Laurent Doyen, and Thomas Soullard. Synthesising full-information protocols. CoRR, abs/2307.01063, 2023. URL: https://doi.org/10.48550/arXiv.2307.01063.
  8. Julian C. Bradfield and Colin Stirling. Modal mu-calculi. In Patrick Blackburn, J. F. A. K. van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in logic and practical reasoning, pages 721-756. North-Holland, 2007. URL: https://doi.org/10.1016/s1570-2464(07)80015-2.
  9. Julian C. Bradfield and Igor Walukiewicz. The mu-calculus and model checking. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages 871-919. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-10575-8_26.
  10. Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and Rohit Singh. Quantitative synthesis for concurrent programs. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 243-259. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-22110-1_20.
  11. Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Thomas A. Henzinger. Randomness for free. Inf. Comput., 245:3-16, 2015. URL: https://doi.org/10.1016/j.ic.2015.06.003.
  12. Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification. J. ACM, 42(4):857-907, 1995. URL: https://doi.org/10.1145/210332.210339.
  13. Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games. Theor. Comput. Sci., 386(3):188-217, 2007. URL: https://doi.org/10.1016/j.tcs.2007.07.008.
  14. Stéphane Demri and Raul Fervari. Model-checking for ability-based logics with constrained plans. In Brian Williams, Yiling Chen, and Jennifer Neville, editors, Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pages 6305-6312. AAAI Press, 2023. URL: https://doi.org/10.1609/aaai.v37i5.25776.
  15. Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equivalence of labeled markov chains. Int. J. Found. Comput. Sci., 19(3):549-563, 2008. URL: https://doi.org/10.1142/S0129054108005814.
  16. Robert Gibbons. A primer in game theory. Harvester Wheatsheaf, 1992. Google Scholar
  17. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002. URL: https://doi.org/10.1007/3-540-36387-4.
  18. Dilian Gurov, Valentin Goranko, and Edvin Lundberg. Knowledge-based strategies for multi-agent teams playing against nature. Artif. Intell., 309:103728, 2022. URL: https://doi.org/10.1016/j.artint.2022.103728.
  19. Donald A. Martin. The determinacy of blackwell games. J. Symb. Log., 63(4):1565-1581, 1998. URL: https://doi.org/10.2307/2586667.
  20. A. Paz. Introduction to probabilistic automata. Academic Press, 1971. Google Scholar
  21. Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Algorithms for omega-regular games with imperfect information. Log. Methods Comput. Sci., 3(3), 2007. URL: https://doi.org/10.2168/LMCS-3(3:4)2007.
  22. John H. Reif. The complexity of two-player games of incomplete information. J. Comput. Syst. Sci., 29(2):274-301, 1984. URL: https://doi.org/10.1016/0022-0000(84)90034-5.
  23. Wolfgang Thomas. On the synthesis of strategies in infinite games. In Ernst W. Mayr and Claude Puech, editors, STACS 95, 12th Annual Symposium on Theoretical Aspects of Computer Science, Munich, Germany, March 2-4, 1995, Proceedings, volume 900 of Lecture Notes in Computer Science, pages 1-13. Springer, 1995. URL: https://doi.org/10.1007/3-540-59042-0_57.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail