Long-Term Landmark and Route Memory Retention Acquired in a Real-World Map-Aided Navigation Task (Short Paper)

Authors Armand Kapaj , Christopher Hilton , Sara I. Fabrikant



PDF
Thumbnail PDF

File

LIPIcs.COSIT.2024.13.pdf
  • Filesize: 0.9 MB
  • 9 pages

Document Identifiers

Author Details

Armand Kapaj
  • Geographic Information Visualization and Analysis (GIVA), Department of Geography, University of Zurich, Switzerland
Christopher Hilton
  • Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Technische Universität Berlin, Germany
Sara I. Fabrikant
  • Geographic Information Visualization and Analysis (GIVA), Department of Geography, University of Zurich, Switzerland

Cite AsGet BibTex

Armand Kapaj, Christopher Hilton, and Sara I. Fabrikant. Long-Term Landmark and Route Memory Retention Acquired in a Real-World Map-Aided Navigation Task (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 13:1-13:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.COSIT.2024.13

Abstract

The visualization of landmarks in mobile maps has become a popular countermeasure to the negative effect navigation aids have on spatial learning. Landmarks are salient environmental cues that serve as cognitive anchors during navigation, facilitating spatial memory formation and long-term retention. However, longitudinal studies assessing long-term spatial memory retention acquired during mobile map-assisted navigation in the real world and what role visualized landmarks play in this context are still scarce. We report on a longitudinal study to assess long-term spatial memory retention of wayfinders who, two years prior, navigated only once a real-world route prescribed with a mobile map aid enriched with visually salient task-relevant landmarks. We report preliminary results on their long-term memory retention of acquired landmark and route knowledge. We found that participants retained meaningful long-term landmark and route knowledge over the two-year study period. While landmark knowledge decreased over the test-retest sessions, gained route knowledge was unaffected. These ecologically valid results contribute to a better understanding of spatial memory formation and long-term retention after one route exposure through a real-world environment, aided by a mobile map enriched with salient landmarks.

Subject Classification

ACM Subject Classification
  • Human-centered computing → Visualization design and evaluation methods
  • Applied computing → Psychology
  • Applied computing → Cartography
Keywords
  • Long-term
  • spatial memory
  • retention
  • map-aided
  • real-world navigation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. E. R. Chrastil and W. H. Warren. Active and passive contributions to spatial learning. Psychonomic Bulletin & Review, 19:1-23, 2012. URL: https://doi.org/10.3758/s13423-011-0182-x.
  2. L. L. Corazzini, C. Thinus-Blanc, M.-P. Nesa, G. C. Geminiani, and P. Péruch. Differentiated forgetting rates of spatial knowledge in humans in the absence of repeated testing. Memory, 16(7):678-688, 2008. URL: https://doi.org/10.1080/09658210802286931.
  3. L. Dahmani and V. D. Bohbot. Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10:6310, 2020. URL: https://doi.org/10.1038/s41598-020-62877-0.
  4. A. D. Ekstrom. Why vision is important to how we navigate. Hippocampus, 25(6):731-735, 2015. URL: https://doi.org/10.1002/hipo.22449.
  5. R. A. Epstein and L. K. Vass. Neural systems for landmark-based wayfinding in humans. Philosophical Transactions of the Royal Society B, 369:20120533, 2014. URL: https://doi.org/10.1098/rstb.2012.0533.
  6. C. Franke and J. Schweikart. Mental representation of landmarks on maps: Investigating cartographic visualization methods with eye tracking technology. Spatial Cognition & Computation, 17(1-2):20-38, 2017. URL: https://doi.org/10.1080/13875868.2016.1219912.
  7. A. L. Gardony, T. T. Brunyé, and H. A. Taylor. Navigational Aids and Spatial Memory Impairment: The Role of Divided Attention. Spatial Cognition & Computation, 15(4):246-284, 2015. URL: https://doi.org/10.1080/13875868.2015.1059432.
  8. S. Gillner and H. A. Mallot. Navigation and Acquisition of Spatial Knowledge in a Virtual Maze. Journal of Cognitive Neuroscience, 10(4):445-463, 1998. URL: https://doi.org/10.1162/089892998562861.
  9. H. Heft. The role of environmental features in route-learning: Two exploratory studies of way-finding. Environmental Psychology and Nonverbal Behavior, 3(3):172-185, 1979. URL: https://doi.org/10.1007/BF01142591.
  10. M. Hegarty and D. Waller. A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2):175-191, 2004. URL: https://doi.org/10.1016/j.intell.2003.12.001.
  11. C. Hilton, A. Kapaj, and S. I. Fabrikant. Landmark sequence learning from real-world route navigation and the impact of navigation aid visualisation style. Journal of Cognition, 6(1):41, 2023. URL: https://doi.org/10.5334/joc.307.
  12. C. Hilton, A. Kapaj, and S. I. Fabrikant. Fixation-related potentials during mobile map assisted navigation in the real world: The effect of landmark visualization style. Attention, Perception, & Psychophysics, 2024. URL: https://doi.org/10.3758/s13414-024-02864-z.
  13. M. Hirshhorn, C. Grady, R. S. Rosenbaum, G. Winocur, and M. Moscovitch. The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: A longitudinal fMRI study. Hippocampus, 22(4):842-852, 2012. URL: https://doi.org/10.1002/hipo.20944.
  14. T. Ishikawa. Satellite Navigation and Geospatial Awareness: Long-Term Effects of Using Navigation Tools on Wayfinding and Spatial Orientation. The Professional Geographer, 71(2):197-209, 2019. URL: https://doi.org/10.1080/00330124.2018.1479970.
  15. A. Jeneson and L. R. Squire. Working memory, long-term memory, and medial temporal lobe function. Learning & Memory, 19(1):15-25, 2012. URL: https://doi.org/10.1101/lm.024018.111.
  16. A. Kapaj, C. Hilton, S. Lanini-Maggi, and S. I. Fabrikant. The influence of landmark visualization style on task performance, visual attention, and spatial learning in a real-world navigation task. Spatial Cognition & Computation, 2024. URL: https://doi.org/10.1080/13875868.2024.2328099.
  17. A. Kapaj, S. Lanini-Maggi, C. Hilton, B. Cheng, and S. I. Fabrikant. How does the design of landmarks on a mobile map influence wayfinding experts’ spatial learning during a real-world navigation task? Cartography and Geographic Information Science, 50(2):197-213, 2023. URL: https://doi.org/10.1080/15230406.2023.2183525.
  18. A. Kapaj, E. Lin, and S. Lanini-Maggi. The Effect of Abstract vs. Realistic 3D Visualization on Landmark and Route Knowledge Acquisition. In T. Ishikawa, S. I. Fabrikant, and S. Winter, editors, 15th International Conference on Spatial Information Theory (COSIT 2022), volume 240, pages 15:1-15:8, 2022. URL: https://doi.org/10.4230/LIPIcs.COSIT.2022.15.
  19. J. W. Kelly and T. P. McNamara. Spatial Memory and Spatial Orientation. In C. Freksa, N. S. Newcombe, P. Gärdenfors, and S. Wölfl, editors, Spatial Cognition VI. Learning, Reasoning, and Talking about Space, pages 22-38, 2008. URL: https://doi.org/10.1007/978-3-540-87601-4_5.
  20. H. Liao, W. Dong, C. Peng, and H. Liu. Exploring differences of visual attention in pedestrian navigation when using 2D maps and 3D geo-browsers. Cartography and Geographic Information Science, 44(6):474-490, 2017. URL: https://doi.org/10.1080/15230406.2016.1174886.
  21. D. Makowski. The psycho Package: an Efficient and Publishing-Oriented Workflow for Psychological Science. Journal of Open Source Software, 3(22):470, 2018. URL: https://doi.org/10.21105/joss.00470.
  22. A. M. P. Miller, L. C. Vedder, L. M. Law, and D. M. Smith. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition. Frontiers in Human Neuroscience, 8, 2014. URL: https://doi.org/10.3389/fnhum.2014.00586.
  23. S. Münzer and C. Hölscher. Entwicklung und Validierung eines Fragebogens zu räumlichen Strategien. Diagnostica, 57(3):111-125, 2011. URL: https://doi.org/10.1026/0012-1924/a000040.
  24. E. Z. Patai, A.-H. Javadi, J. D. Ozubko, A. O’Callaghan, S. Ji, J. Robin, C. Grady, G. Winocur, R. S. Rosenbaum, M. Moscovitch, and H. J. Spiers. Hippocampal and Retrosplenial Goal Distance Coding After Long-term Consolidation of a Real-World Environment. Cerebral Cortex, 29(6):2748-2758, 2019. URL: https://doi.org/10.1093/cercor/bhz044.
  25. G. A. Radvansky, A. C. Doolen, K. A. Pettijohn, and M. Ritchey. A new look at memory retention and forgetting. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(11):1698-1723, 2022. URL: https://doi.org/10.1037/xlm0001110.
  26. S. Ramanoël, M. Durteste, A. Bizeul, A. Ozier-Lafontaine, M. Bécu, J.-A. Sahel, C. Habas, and A. Arleo. Selective neural coding of object, feature, and geometry spatial cues in humans. Human Brain Mapping, 43(17):5281-5295, 2022. URL: https://doi.org/10.1002/hbm.26002.
  27. G. Sharma, Y. Kaushal, S. Chandra, V. Singh, A. P. Mittal, and V. Dutt. Influence of Landmarks on Wayfinding and Brain Connectivity in Immersive Virtual Reality Environment. Frontiers in Psychology, 8, 2017. URL: https://doi.org/10.3389/fpsyg.2017.01220.
  28. H. J. Spiers and E. A. Maguire. The neuroscience of remote spatial memory: A tale of two cities. Neuroscience, 149(1):7-27, 2007. URL: https://doi.org/10.1016/j.neuroscience.2007.06.056.
  29. H. Stanislaw and N. Todorov. Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31:137-149, 1999. URL: https://doi.org/10.3758/BF03207704.
  30. B. J. Stankiewicz and A. A. Kalia. Acquistion of structural versus object landmark knowledge. Journal of Experimental Psychology: Human Perception and Performance, 33(2):378-390, 2007. URL: https://doi.org/10.1037/0096-1523.33.2.378.
  31. J. S. Taube. The Head Direction Signal: Origins and Sensory-Motor Integration. Annual Review of Neuroscience, 30:181-207, 2007. URL: https://doi.org/10.1146/annurev.neuro.29.051605.112854.
  32. T. Thrash, S. Lanini-Maggi, S. I. Fabrikant, S. Bertel, A. Brügger, S. Credé, C. T. Do, G. Gartner, H. Huang, S. Münzer, and K.-F. Richter. The Future of Geographic Information Displays from GIScience, Cartographic, and Cognitive Science Perspectives. In S. Timpf, C. Schlieder, M. Kattenbeck, B. Ludwig, and K. Stewart, editors, 14th International Conference on Spatial Information Theory (COSIT 2019), volume 142, pages 19:1-19:11, 2019. URL: https://doi.org/10.4230/LIPIcs.COSIT.2019.19.
  33. G. Winocur, M. Moscovitch, and B. Bontempi. Memory formation and long-term retention in humans and animals: Convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia, 48(8):2339-2356, 2010. URL: https://doi.org/10.1016/j.neuropsychologia.2010.04.016.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail