A Salience-Based Framework for Terrain Modelling: From the Surface Network to Topo-Contexts

Authors Éric Guilbert , Bernard Moulin



PDF
Thumbnail PDF

File

LIPIcs.COSIT.2024.2.pdf
  • Filesize: 6.26 MB
  • 20 pages

Document Identifiers

Author Details

Éric Guilbert
  • Département des sciences géomatiques, Université Laval, Québec, Canada
Bernard Moulin
  • Département d'informatique et de génie logiciel, Université Laval, Québec, Canada

Cite AsGet BibTex

Éric Guilbert and Bernard Moulin. A Salience-Based Framework for Terrain Modelling: From the Surface Network to Topo-Contexts. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.COSIT.2024.2

Abstract

Twenty years after Mark and Smith’s seminal paper, a Science of Topography, we revisit some of their fundamental questions about how landforms are recognised by people and how they can be automatically extracted or delimited from representations of topographic surfaces. Many approaches and tools, essentially based on GeoOBIA, can extract objects associated with landforms from image data. But, they cannot relate these objects to the topology and topography of the terrain. Yet, geo-scientists can easily recognise landforms, considering terrain characteristics and other factors composing the context of appearance of those landforms. Revisiting Gestalt Theory, we propose a salience-based approach fostering a holistic view of the terrain which fits with the geoscientists' ability to recognise landforms using the topographic and hydrologic contexts. The terrain is represented as an extended surface network (ESN), a graph composed of elementary saliences (peaks, pits, saddles, thalweg and ridge networks) and obtained from raster data. The ESN combines both the surface and the drainage networks in a sound topological representation of the terrain. A skeletonisation technique of the ESN’s thalweg and ridge networks is proposed to geometrically and topologically characterise landforms, as well as ensembles of landforms. On this basis and to represent the context of appearance of landforms, geo/topo-contexts are introduced as structures grounded in the properties of the ESN and using the skeletonisation technique. We give an illustration of how a geomorphologist can apply our approach and tools, using the depressions and drainage basins as examples of useful geo/topo-contexts.

Subject Classification

ACM Subject Classification
  • Information systems → Geographic information systems
Keywords
  • DTM
  • surface network
  • landform
  • topographic context
  • saliences

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. G. Anjos Carvalho and A. C. Mourão Moura. Applying gestalt theories and graphical semiology as visual systems supporting thematic cartography. In Proc. of the 24th International Cartographic Conference, 2009. Google Scholar
  2. R. Arav and S. Filin. A visual saliency-driven extraction framework of smoothly embedded entities in 3D point clouds of open terrain. ISPRS Journal of Photogrammetry and Remote Sensing, 188:125-140, 2022. Google Scholar
  3. S. T. Arundel. Pairing semantics and object-based image analysis for national terrain mapping - a first-case scenario of cirques. In Proceedings of GEOBIA 2016: Solutions and synergies, Enschede, Netherlands, September 2016. Google Scholar
  4. S. T. Arundel and G. Sinha. Validating the use of object-based image analysis to map commonly recognized landform features in the United States. Cartography and Geographic Information Science, 46(5):441-455, 2019. Google Scholar
  5. L. E. Band. Spatial hydrography and landforms. In P. Longley, M. Goodchild, D. Maguire, and D. Rhind, editors, GIS: Management Issues and Applications, pages 527-542. John Wiley & Sons, 1999. Google Scholar
  6. M. P. Bishop, L. A. James, J. F. Shroder Jr, and S. J. Walsh. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology, 137:5-26, 2012. Google Scholar
  7. T. Bittner. On ontology and epistemology of rough location. In C. Freksa and David M. Mark, editors, Spatial Information Theory - Cognitive and Computational Foundations of Geographic Information Science, volume 1661 of Lecture Notes in Computer Science, pages 433-448. Springer, 1999. Google Scholar
  8. T. Blaschke, G. J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R. Queiroz Feitosa, F. van der Meer, H. van der Werff, van Coillie F., and D. Tiede. Geographic object-based image analysis - towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87:180-191, 2014. Google Scholar
  9. V. Boswijk and M. Coler. What is salience? Open Linguistics, 6:713-722, 2020. Google Scholar
  10. G. Brierley, K. Fryirs, C. Cullum, M. Tadaki, H. Q. Huang, and B Blue. Reading the landscape: Integrating the theory and practice of geomorphology to develop place-based understandings of river systems. Progress in Physical Geography, 37(5):601-621, 2013. Google Scholar
  11. D. Caduf and S. Timpf. On the assessment of landmark salience for human navigation. Cognitive Processing, 9(249-267), 2008. Google Scholar
  12. C. Claramunt. Ontologies for geospatial information: Progress and challenges ahead. Journal of Spatial Information Science, 20(1):35-41, 2020. Google Scholar
  13. P.U. Clark. The last glacial maximum. Science, 325:710-714, 2009. Google Scholar
  14. K.C Clarke and B.E. Romero. On the topology of topography: a review. Cartography and Geographic Information Science, 44(3):271-282, 2016. Google Scholar
  15. M. G. G. De Jong, H. P. Sterk, S. Shinneman, and A.C. Seijmonsbergen. Hierarchical geomorphological mapping in mountainous areas. Journal of Maps, 17(2):214-225, 2021. Google Scholar
  16. M. Dehn, H. Gärtner, and R. Dikau. Principles of semantic modelling of landform structures. Computers and Geosciences, 27:1005-1010, 2001. Google Scholar
  17. Y. Deng. New trends in digital terrain analysis: landform definition, representation, and classification. Progress in Physical Geography, 31(4):405-419, 2007. Google Scholar
  18. M. J. Egenhofer and D. M. Mark. Naive geography. In Andrew U. Frank and Werner Kuhn, editors, Spatial Information Theory: A Theoretical Basis for GIS, volume 988 of Lecture Notes in Computer Science, pages 1-15, 1995. Google Scholar
  19. M. Erwig and M. Schneider. Formalisation of advanced map operations. In Proceedings of the 9th Symposium on Spatial Data Handling, pages 8a, 3-17, 2000. Google Scholar
  20. I. S. Evans. Geomorphometry and landform mapping: What is a landform? Geomorphology, 137:94-106, 2012. Google Scholar
  21. A.U. Frank, G.S. Volta, and M. McGranaghan. Formalization of families of categorical coverages. International Journal of Geographical Information Sciences, 11(3):215-231, 1997. Google Scholar
  22. E. Guilbert. Surface network extraction from high resolution digital terrain models. Journal of Spatial Information Science, 22:33-59, 2021. Google Scholar
  23. E. Guilbert, F. Lessard, N. Perreault, and S. Jutras. Surface network and drainage network: towards a common data structure. Journal of Spatial Information Science, 24:53-77, 2023. Google Scholar
  24. E. Guilbert and B. Moulin. Towards a common framework for the identification of landforms on terrain models. ISPRS international journal of geo-information, 6(1):12, 2017. Google Scholar
  25. E. Guilbert, B. Moulin, and A. Cortés Murcia. A conceptual model for the representation of landforms using ontology design patterns. In ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, volume III-2, pages 15-22, 2016. Google Scholar
  26. F. Gülgen and T. Gökgöz. Automatic extraction of terrain skeleton lines from digital elevation models. In Proc. of Conference: ISPRS XXth Congress, Istanbul, Turkey, volume 35, 2004. Google Scholar
  27. S. Hariri, S. Weill, J. Gustedt, and I. Charpentier. A balanced watershed decomposition method for rain-on-grid simulations in HEC-RAS. Journal of Hydroinformatics, 24(2):315-332, 2022. Google Scholar
  28. D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63:29-78, 1997. Google Scholar
  29. Y. Hu. Geospatial semantics. In Comprehensive Geographic Information Systems. Elsevier, 2018. URL: https://doi.org/10.1016/B978-0-12-409548-9.09597-X.
  30. M. Kokla and E. Guilbert. A review of geospatial semantic information modeling and elicitation approaches. ISPRS International Journal Geo Information, 9(3):146, 2020. Google Scholar
  31. S. Krasovskaya and W. J. MacInnes. Salience models, a computational cognitive neuroscience review. Vision, 3:56, 2019. URL: https://doi.org/10.3390/vision3040056.
  32. J.-M. Le Yaouanc, E. Saux, and C. Claramunt. A salience-based approach for the modeling of landscape descriptions. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 396-399, 2009. Google Scholar
  33. D. M. Mark and B. Smith. A science of topography: From qualitative ontology to digital representations. In M. P. Bishop and J. F. Jr Shroder, editors, Geographic Information Science and Mountain Geomorphology, pages 75-100. Praxis Publishing, 2004. Google Scholar
  34. G. Moretti and S. Orlandini. Automatic delineation of drainage basins from contour elevation data using skeleton construction techniques. Water Resources Research, 44:W05403, 2008. Google Scholar
  35. M. Morse. Relations between the critical points of a real function on n independent variables. Transactions of the American Mathematical Society, 27:345-396, 1925. Google Scholar
  36. E. Mungan. Gestalt theory: A revolution put on pause? Prospects for a paradigm shift in the psychological sciences. New Ideas in Psychology, 71:101036, 2023. Google Scholar
  37. J. F. O'Callaghan and D. M. Mark. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28:323-344, 1984. Google Scholar
  38. S. Openshaw. A geographical solution to scale and aggregation problems in region-building, partitioning and spatial modelling. Transactions of the Institute of British Geographers, 2(4):459-472, 1977. Google Scholar
  39. J. Pfaltz. Surface networks. Geographical Analysis, 8:77-93, 1976. Google Scholar
  40. H. Ramiaramanana, E. Guilbert, and B. Moulin. A cognitive approach for landsystem identification using a graph database - towards the identification of landforms in context. In Proc. of the 24th Congress of ISPRS France, June 2022, 2022. URL: https://doi.org/10.5194/isprs-annals-V-4-2022-17-2022.
  41. G. Sinha, S.T. Arundel, T. Hahmann, K. Stewart, E. L. Usery, and D. M. Mark. The landform reference ontology (LFRO): a foundation for exploring linguistic and geospatial conceptualization of landforms. In Proceedings of GIScience 2018, pages 59:1-59:7, 2018. Google Scholar
  42. G. Sinha, D. Kolas, D. M. Mark, B. E. Romero, E. L. Usery, G. Berg-Cross, and Padmanabhan A. Surface network ontology design patterns for linked topographic data, 2013. URL: http://www.semantic-web-journal.net/system/files/swj553.pdf.
  43. G. Sinha and D. M. Mark. Cognition-based extraction and modelling of topographic eminences. Cartographica, 45(2):105-112, 2010. Google Scholar
  44. G. Sinha and D. M. Mark. Toward a foundational ontology of the landscape. In R. S Purves and R. Weibel, editors, Online extended abstracts of the 6th International Conference on GIScience, 2010. URL: http://www.giscience2010.org/pdfs/paper_232.pdf.
  45. G. Sinha, D. M. Mark, D. Kolas, D. Varanka, B. E. Romero, C.-C. Feng, E. L. Usery, J. Liebermann, and A. Sorokine. An ontology design pattern for surface water features. In GIScience, pages 187-203, 2014. Google Scholar
  46. C. Spötl, G. Koltai, A. H. Jarosch, and H. Cheng. Increased autumn and winter precipitation during the last glacial maximum in the european alps. Nature Communications, 12:1839, 2021. Google Scholar
  47. A.N. Strahler. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 8(6):913-920, 1957. Google Scholar
  48. J. Strobl. Segmentation-based terrain classification. In Q. Zhou, B. Lees, and G.-A. Tang, editors, Advances in Digital Terrain Analysis, Lecture Notes in Geoinformation and Cartography, pages 125-139. Springer, 2008. Google Scholar
  49. S. Timpf. Abstraction, levels of detail, and hierarchies in map series. In C. Freksa and D.M. Mark, editors, Spatial Information Theory - Cognitive and Computational Foundations of Geographic Information Science, volume 1661 of LNCS, pages 125-140. Springer-Verlag, 1999. Google Scholar
  50. S. Timpf and A. U. Frank. Using hierarchical spatial data structures for hierarchical spatial reasoning. In S. C. Hirtle and A. U. Frank, editors, Spatial Information Theory - A Theoretical Basis for GIS, volume 1329 of LNCS, pages 69-83. Springer-Verlag, 1997. Google Scholar
  51. A. Toshev, B. Taskar, and K. Daniilidis. Object detection via boundary structure segmentation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 950-957, June 2010. Google Scholar
  52. D. E. Varanka. Ontology patterns for complex topographic feature types. Cartography and Geographic Information Science, 38(2):126-136, 2011. Google Scholar
  53. J. Villette, N. Burenhult, and R. S. Purves. Maps meet myths: Understanding jahai place naming through geographical information systems. Journal of Linguistic Geography, 10:1-10, 2022. Google Scholar
  54. J-P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä. Nationwide point cloud – the future topographic core data. International Journal of Geo-Information, 6:243, 2017. URL: https://doi.org/10.3390/ijgi6080243, 2017.
  55. G. W. Wolf. Topographic surfaces and surface networks. In Topological Data Structures for Surfaces. An Introduction to Geographical Information Science, pages 15-29. Wiley, 2004. Google Scholar
  56. J. M. Wolfe. Visual attention. In K. K. de Valois, editor, Seeing: Handbook of Perception and Cognition, pages 335-386. Academic Press, 2000. Google Scholar
  57. J. Wu and L. Zhang. Gestalt saliency: Salient region detection based on gestalt principles. In IEEE International Conference on Image Processing, pages 181-185, 2013. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail