Slide&Drill, a New Approach for Multi-Objective Combinatorial Optimization

Authors João Cortes , Inês Lynce , Vasco Manquinho



PDF
Thumbnail PDF

File

LIPIcs.CP.2024.8.pdf
  • Filesize: 5.96 MB
  • 17 pages

Document Identifiers

Author Details

João Cortes
  • INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
Inês Lynce
  • INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
Vasco Manquinho
  • INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Cite AsGet BibTex

João Cortes, Inês Lynce, and Vasco Manquinho. Slide&Drill, a New Approach for Multi-Objective Combinatorial Optimization. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CP.2024.8

Abstract

Following the successful use of Propositional Satisfiability (SAT) algorithms in Boolean optimization (e.g., Maximum Satisfiability), several SAT-based algorithms have been proposed for Multi-Objective Combinatorial Optimization (MOCO). However, these new algorithms either provide a small subset of the Pareto front or follow a more exploratory search procedure and the solutions found are usually distant from the Pareto front. We extend the state of the art with a new SAT-based MOCO solver, Slide and Drill (Slide&Drill), that hones an upper bound set of the exact solution. Moreover, we show that Slide&Drill neatly complements proposed UNSAT-SAT algorithms for MOCO. These algorithms can work in tandem over the same shared "blackboard" formula, in order to enable a faster convergence. Experimental results in several sets of benchmark instances show that Slide&Drill can outperform other SAT-based algorithms for MOCO, in particular when paired with previously proposed UNSAT-SAT algorithms.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Optimization algorithms
Keywords
  • Multi-Objective Combinatorial Optimization
  • Satisfiability Algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving glucose for incremental SAT solving with assumptions: Application to MUS extraction. In Matti Järvisalo and Allen Van Gelder, editors, 16th International Conference on Theory and Applications of Satisfiability Testing, SAT 2013, Helsinki, Finland, July 8-12, 2013, volume 7962 of Lecture Notes in Computer Science, pages 309-317. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-39071-5_23.
  2. Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiabiliy. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 929-991. IOS Press, 2021. URL: https://doi.org/10.3233/FAIA201008.
  3. Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality constraints. In Francesca Rossi, editor, International Conference on Principles and Practice of Constraint Programming (CP), volume 2833 of Lecture Notes in Computer Science, pages 108-122. Springer, 2003. URL: https://doi.org/10.1007/978-3-540-45193-8_8.
  4. Pierre Bieber, Remi Delmas, and Christel Seguin. Dalculus - theory and tool for development assurance level allocation. In Francesco Flammini, Sandro Bologna, and Valeria Vittorini, editors, Computer Safety, Reliability, and Security - 30th International Conference, SAFECOMP 2011, Naples, Italy, September 19-22, 2011. Proceedings, volume 6894 of Lecture Notes in Computer Science, pages 43-56. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-24270-0_4.
  5. João Cortes, Inês Lynce, and Vasco M. Manquinho. New core-guided and hitting set algorithms for multi-objective combinatorial optimization. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings, Part II, volume 13994 of Lecture Notes in Computer Science, pages 55-73. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-30820-8_7.
  6. Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput., 18(4):577-601, 2014. URL: https://doi.org/10.1109/TEVC.2013.2281535.
  7. Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. In Ofer Strichman and Armin Biere, editors, First International Workshop on Bounded Model Checking, BMC@CAV 2003, Boulder, Colorado, USA, July 13, 2003, volume 89 of Electronic Notes in Theoretical Computer Science, pages 543-560. Elsevier, 2003. URL: https://doi.org/10.1016/S1571-0661(05)82542-3.
  8. Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1-26, 2006. URL: https://doi.org/10.3233/sat190014.
  9. Matthias Ehrgott, Xavier Gandibleux, and Anthony Przybylski. Exact methods for multi-objective combinatorial optimisation. In Salvatore Greco, Matthias Ehrgott, and José Rui Figueira, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 817-850. Springer New York, New York, NY, 2016. URL: https://doi.org/10.1007/978-1-4939-3094-4_19.
  10. Marco Gavanelli. An algorithm for multi-criteria optimization in csps. In European Conference on Artificial Intelligence, pages 136-140. IOS Press, 2002. Google Scholar
  11. Christoph Jabs, Jeremias Berg, Hannes Ihalainen, and Matti Järvisalo. Preprocessing in sat-based multi-objective combinatorial optimization. In Roland H. C. Yap, editor, 29th International Conference on Principles and Practice of Constraint Programming, CP 2023, August 27-31, 2023, Toronto, Canada, volume 280 of LIPIcs, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.CP.2023.18.
  12. Christoph Jabs, Jeremias Berg, Andreas Niskanen, and Matti Järvisalo. Maxsat-based bi-objective boolean optimization. In International Conference on Theory and Applications of Satisfiability Testing, volume 236 of LIPIcs, pages 12:1-12:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SAT.2022.12.
  13. Mikolás Janota, Inês Lynce, Vasco M. Manquinho, and João Marques-Silva. Packup: Tools for package upgradability solving. J. Satisf. Boolean Model. Comput., 8(1/2):89-94, 2012. URL: https://doi.org/10.3233/sat190090.
  14. Mikolás Janota, António Morgado, José Fragoso Santos, and Vasco M. Manquinho. The seesaw algorithm: Function optimization using implicit hitting sets. In International Conference on Principles and Practice of Constraint Programming, volume 210 of LIPIcs, pages 31:1-31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.CP.2021.31.
  15. Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for pseudo-boolean constraints. In International Conference Principles and Practice of Constraint Programming, volume 9255 of LNCS, pages 200-209. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-23219-5_15.
  16. Michal Karpinski and Marek Piotrów. Encoding cardinality constraints using multiway merge selection networks. Constraints, 24(3-4):234-251, 2019. URL: https://doi.org/10.1007/s10601-019-09302-0.
  17. Rui Li, Qinghua Zheng, Xiuqi Li, and Zheng Yan. Multi-objective optimization for rebalancing virtual machine placement. Future Gener. Comput. Syst., 105:824-842, 2020. URL: https://doi.org/10.1016/j.future.2017.08.027.
  18. Mancoosi international solver competition 2011. URL: https://www.mancoosi.org/misc-2011/index.html.
  19. Rafael Marques, Luís M. S. Russo, and Nuno Roma. Flying tourist problem: Flight time and cost minimization in complex routes. Expert Syst. Appl., 130:172-187, 2019. URL: https://doi.org/10.1016/j.eswa.2019.04.024.
  20. Kaisa Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer Science & Business Media, 2012. Google Scholar
  21. Alexander Nadel and Vadim Ryvchin. Efficient SAT solving under assumptions. In Alessandro Cimatti and Roberto Sebastiani, editors, 15th International Conference on Theory and Applications of Satisfiability Testing - SAT 2012, Trento, Italy, June 17-20, 2012, volume 7317 of Lecture Notes in Computer Science, pages 242-255. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-31612-8_19.
  22. Derek Rayside, H.-Christian Estler, and Daniel Jackson. The guided improvement algorithm for exact, general-purpose, many-objective combinatorial optimization. Technical Report Technical Report MIT-CSAIL-TR-2009-033, MIT Massachusetts Institute of Technology, 2009. Google Scholar
  23. Olivier Roussel. Controlling a Solver Execution with the runsolver Tool: System description. Journal on Satisfiability, Boolean Modeling and Computation, 7(4):139-144, November 2011. URL: https://doi.org/10.3233/SAT190083.
  24. Olivier Roussel and Vasco M. Manquinho. Pseudo-boolean and cardinality constraints. In Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages 695-733. IOS Press, 2009. URL: https://doi.org/10.3233/978-1-58603-929-5-695.
  25. Pierre Schaus and Renaud Hartert. Multi-objective large neighborhood search. In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 611-627. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40627-0_46.
  26. Takehide Soh, Mutsunori Banbara, Naoyuki Tamura, and Daniel Le Berre. Solving multiobjective discrete optimization problems with propositional minimal model generation. In International Conference Principles and Practice of Constraint Programming, volume 10416 of LNCS, pages 596-614. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-66158-2_38.
  27. Satya Tamby and Daniel Vanderpooten. Enumeration of the nondominated set of multiobjective discrete optimization problems. INFORMS J. Comput., 33(1):72-85, 2021. URL: https://doi.org/10.1287/IJOC.2020.0953.
  28. Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Introducing pareto minimal correction subsets. In International Conference on Theory and Applications of Satisfiability Testing, volume 10491 of LNCS, pages 195-211. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-66263-3_13.
  29. Yuan Yuan and Wolfgang Banzhaf. ARJA: automated repair of java programs via multi-objective genetic programming. IEEE Trans. Software Eng., 46(10):1040-1067, 2020. URL: https://doi.org/10.1109/TSE.2018.2874648.
  30. Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput., 11(6):712-731, 2007. URL: https://doi.org/10.1109/TEVC.2007.892759.
  31. E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, University of Zurich, Zürich, Switzerland, 1999. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail