Document

# In-Place Bijective Burrows-Wheeler Transforms

## File

LIPIcs.CPM.2020.21.pdf
• Filesize: 1.02 MB
• 15 pages

## Acknowledgements

We thank the anonymous reviewers for attracting our attention to the related work of Mantaci et al. [Sabrina Mantaci et al., 2014].

## Cite As

Dominik Köppl, Daiki Hashimoto, Diptarama Hendrian, and Ayumi Shinohara. In-Place Bijective Burrows-Wheeler Transforms. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 21:1-21:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.CPM.2020.21

## Abstract

One of the most well-known variants of the Burrows-Wheeler transform (BWT) [Burrows and Wheeler, 1994] is the bijective BWT (BBWT) [Gil and Scott, arXiv 2012], which applies the extended BWT (EBWT) [Mantaci et al., TCS 2007] to the multiset of Lyndon factors of a given text. Since the EBWT is invertible, the BBWT is a bijective transform in the sense that the inverse image of the EBWT restores this multiset of Lyndon factors such that the original text can be obtained by sorting these factors in non-increasing order. In this paper, we present algorithms constructing or inverting the BBWT in-place using quadratic time. We also present conversions from the BBWT to the BWT, or vice versa, either (a) in-place using quadratic time, or (b) in the run-length compressed setting using 𝒪(n lg r / lg lg r) time with 𝒪(r lg n) bits of words, where r is the sum of character runs in the BWT and the BBWT.

## Subject Classification

##### ACM Subject Classification
• Theory of computation
• Mathematics of computing → Combinatorics on words
##### Keywords
• In-Place Algorithms
• Burrows-Wheeler transform
• Lyndon words

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Donald Adjeroh, Timothy Bell, and Amar Mukherjee. The Burrows-Wheeler Transform:: Data Compression, Suffix Arrays, and Pattern Matching. Springer, 2008.
2. Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Constructing the bijective BWT. ArXiv 1911.06985, 2019.
3. Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Indexing the bijective BWT. In Proc. CPM, volume 128 of LIPIcs, pages 17:1-17:14, 2019.
4. Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel Vildhøj, and Søren Vind. Dynamic relative compression, dynamic partial sums, and substring concatenation. Algorithmica, 80(11):3207-3224, 2018.
5. Silvia Bonomo, Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Sorting conjugates and suffixes of words in a multiset. Int. J. Found. Comput. Sci., 25(8):1161, 2014.
6. Michael Burrows and David J. Wheeler. A block sorting lossless data compression algorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.
7. Timothy M. Chan, J. Ian Munro, and Venkatesh Raman. Selection and sorting in the "restore" model. ACM Trans. Algorithms, 14(2):11:1-11:18, 2018.
8. Kuo Tsai Chen, Ralph H. Fox, and Roger C. Lyndon. Free differential calculus, IV. The quotient groups of the lower central series. Annals of Mathematics, pages 81-95, 1958.
9. Maxime Crochemore, Roberto Grossi, Juha Kärkkäinen, and Gad M. Landau. Computing the Burrows-Wheeler transform in place and in small space. J. Discrete Algorithms, 32:44-52, 2015.
10. Jean-Pierre Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363-381, 1983.
11. Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In Proc. FOCS, pages 390-398, 2000.
12. Paolo Ferragina, Giovanni Manzini, and S. Muthu Muthukrishnan. The Burrows-Wheeler Transform: Ten Years Later. DIMACS, 2004.
13. Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with fusion trees. J. Comput. Syst. Sci., 47(3):424-436, 1993.
14. Travis Gagie, Giovanni Manzini, Gonzalo Navarro, and Jens Stoye. 25 Years of the Burrows-Wheeler Transform (Dagstuhl Seminar 19241). Dagstuhl Reports, 9(6):55-68, 2019.
15. Raffaele Giancarlo, Antonio Restivo, and Marinella Sciortino. From first principles to the Burrows and Wheeler transform and beyond, via combinatorial optimization. Theor. Comput. Sci., 387(3):236-248, 2007.
16. Joseph Yossi Gil and David Allen Scott. A bijective string sorting transform. ArXiv 1201.3077, 2012.
17. Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text indexes. In Proc. SODA, pages 841-850, 2003.
18. Torben Hagerup. Fast deterministic construction of static dictionaries. In Proc. SODA, pages 414-418, 1999.
19. Wing-Kai Hon, Tsung-Han Ku, Chen-Hua Lu, Rahul Shah, and Sharma V. Thankachan. Efficient algorithm for circular Burrows-Wheeler transform. In Proc. CPM, volume 7354 of LNCS, pages 257-268, 2012.
20. R. C. Lyndon. On Burnside’s problem. Transactions of the American Mathematical Society, 77(2):202-215, 1954.
21. Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. Nord. J. Comput., 12(1):40-66, 2005.
22. Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches. SIAM J. Comput., 22(5):935-948, 1993.
23. Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension of the Burrows-Wheeler transform. Theor. Comput. Sci., 387(3):298-312, 2007.
24. Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Suffix array and Lyndon factorization of a text. J. Discrete Algorithms, 28:2-8, 2014.
25. Sabrina Mantaci, Antonio Restivo, and Marinella Sciortino. Burrows-Wheeler transform and Sturmian words. Inf. Process. Lett., 86(5):241-246, 2003.
26. J. Ian Munro and Venkatesh Raman. Selection from read-only memory and sorting with minimum data movement. Theor. Comput. Sci., 165(2):311-323, 1996.
27. Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence representations. SIAM J. Comput., 43(5):1781-1806, 2014.
28. Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix array construction. IEEE Trans. Computers, 60(10):1471-1484, 2011.
29. Tatsuya Ohno, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto. A faster implementation of online run-length Burrows-Wheeler transform. In Proc. IWOCA, volume 10765 of LNCS, pages 409-419, 2017.
30. Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded BWT. Algorithmica, 80(7):1986-2011, 2018.
X

Feedback for Dagstuhl Publishing