LIPIcs.CSL.2016.6.pdf
- Filesize: 463 kB
- 15 pages
In the course of providing an (infinitary) axiomatization of the equational theory of the class of context-free languages, Grathwohl, Kozen and Henglein (2013) have introduced the class of mu-continuous Chomsky algebras. These are idempotent semirings where least solutions for systems of polynomial inequations (i.e. context-free grammars) can be computed iteratively and where multiplication is continuous with respect to the least fixed point operator mu. We prove that the matrix ring of a mu-continuous Chomsky algebra also is a mu-continuous Chomsky algebra.
Feedback for Dagstuhl Publishing