First-Order Logic with Equicardinality in Random Graphs

Authors Simi Haber , Tal Hershko , Mostafa Mirabi , Saharon Shelah



PDF
Thumbnail PDF

File

LIPIcs.CSL.2025.12.pdf
  • Filesize: 0.76 MB
  • 17 pages

Document Identifiers

Author Details

Simi Haber
  • Bar-Ilan University, Ramat Gan, Israel
Tal Hershko
  • California Institute of Technology, Pasadena, CA, USA
Mostafa Mirabi
  • Taft School, Watertown, CT, USA
Saharon Shelah
  • Hebrew University of Jerusalem, Israel

Cite As Get BibTex

Simi Haber, Tal Hershko, Mostafa Mirabi, and Saharon Shelah. First-Order Logic with Equicardinality in Random Graphs. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.CSL.2025.12

Abstract

We answer a question of Blass and Harary about the validity of the zero-one law in random graphs for extensions of first-order logic (FOL). For a given graph property P, the Lindström extension of FOL by P is defined as the minimal (regular) extension of FOL able to express P. For several graph properties P (e.g. Hamiltonicity), it is known that the Lindström extension by P is also able to interpret a segment of arithmetic, and thus strongly disobeys the zero-one law. Common to all these properties is the ability to express the Härtig quantifier, a natural extension of FOL testing if two definable sets are of the same size. We prove that the Härtig quantifier is sufficient for the interpretation of arithmetic, thus providing a general result which implies all known cases of Lindström extensions which are able to interpret a segment of arithmetic.

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
  • Mathematics of computing → Random graphs
Keywords
  • finite model theory
  • first-order logic
  • monadic second-order logic
  • random graphs
  • zero-one laws
  • generalized quantifiers
  • equicardinality

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016. Google Scholar
  2. Andreas Blass and Frank Harary. Properties of almost all graphs and complexes. Journal of Graph Theory, 3(3):225-240, 1979. URL: https://doi.org/10.1002/JGT.3190030305.
  3. Béla Bollobás. Random Graphs. Cambridge University Press, 2001. Google Scholar
  4. Kevin J. Compton. 0-1 laws in logic and combinatorics. In Rival Ivan, editor, Algorithms and Order, volume 255 of Advanced Study Institute Series C: Mathematical and Physical Sciences, pages 353-383. Kluwer Academic Publishers, Dordrecht, 1989. Google Scholar
  5. Anuj Dawar and Erich Grädel. Generalized quantifiers and 0-1 laws. In Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer Science (LICS 1995), pages 54-64. IEEE Computer Society Press, June 1995. URL: https://doi.org/10.1109/LICS.1995.523244.
  6. Anuj Dawar and Erich Grädel. Properties of almost all graphs and generalized quantifiers. Fundam. Inform., 98(4):351-372, 2010. URL: https://doi.org/10.3233/FI-2010-232.
  7. Heinz-Dieter Ebbinghaus. Extended logics: The general framework. In Jon Barwise and Solomon Feferman, editors, Model-Theoretic Logics, chapter II, pages 25-76. Association for Symbolic Logic, September 1985. Google Scholar
  8. Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer Berlin, Heidelberg, second edition, 2006. Google Scholar
  9. Paul Erdős and Alfréd Rényi. On random graphs, I. Publicationes Mathematicae, 6:290-297, 1959. Google Scholar
  10. Paul Erdős and Alfréd Rényi. On the evolution of random graphs. In Publication of the Mathematical Institute of the Hungarian Academy of Sciences, number 5 in Acta Math. Acad. Sci. Hungar., pages 17-61, 1960. Google Scholar
  11. Ronald Fagin. Probabilities on finite models. The Journal of Symbolic Logic, 41(1):50-58, March 1976. URL: https://doi.org/10.1017/S0022481200051756.
  12. Guy Fayolle, Stéphane Grumbach, and Christophe Tollu. Asymptotic probabilities of languages with generalized quantifiers. In Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science, pages 199-207, 1993. URL: https://doi.org/10.1109/LICS.1993.287587.
  13. Yu. V. Glebskiĭ, D. I. Kogan, M. I. Liogon'kiĭ, and V. A. Talanov. Range and degree of realizability of formulas in the restricted predicate calculus. Cybernetics and Systems Analysis, 5(2):142-154, March 1969. (Russian original: Kibernetika 5(2):17-27, March-April 1969). Google Scholar
  14. Simi Haber. Generalized quantifiers for simple graph properties in random graphs. , Preprint. Google Scholar
  15. Simi Haber. Arithmetization for first order logic augmented with perfect matching. , Submitted. Google Scholar
  16. Simi Haber and Saharon Shelah. Random graphs and Lindström quantifiers for natural graph properties. Accepted, Annales Univ. Sci. Budapest., Sect. Math, 2024+. HbSh:986 in Shelah’s archive. Google Scholar
  17. Klaus Härtig. Über einen quantifikator mit zwei wirk ungsbereichen. In Laszlo Kalmar, editor, Colloquium on the Foundations of Mathematics, Mathematical Machines and their Applications, pages 31-36. Akademiai Kiado, Budapest, September 1962. Google Scholar
  18. Heinrich Herre, Michał Krynicki, Alexandr Pinus, and Jouko Väänänen. The Härtig quantifier: a survey. Journal of Symbolic Logic, 56(4):1153-1183, December 1991. URL: https://doi.org/10.2307/2275466.
  19. Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random Graphs. John Wiley & Sons, 2000. Google Scholar
  20. Risto Kaila. On probabilistic elimination of generalized quantifiers. Random Struct. Algorithms, 19(1):1-36, 2001. URL: https://doi.org/10.1002/RSA.1016.
  21. Risto Kaila. Convergence laws for very sparse random structures with generalized quantifiers. Math. Log. Q., 48(2):301-320, 2002. URL: https://doi.org/10.1002/1521-3870(200202)48:2%3C301::AID-MALQ301%3E3.0.CO;2-Z.
  22. Risto Kaila. On almost sure elimination of numerical quantifiers. J. Log. Comput., 13(2):273-285, 2003. URL: https://doi.org/10.1093/LOGCOM/13.2.273.
  23. Matt Kaufmann and Saharon Shelah. On random models of finite power and monadic logic. Discrete Mathematics, 54(3):285-293, 1985. URL: https://doi.org/10.1016/0012-365X(85)90112-8.
  24. H. Jerome Keisler and Wafik Boulos Lotfallah. Almost everywhere elimination of probability quantifiers. Journal of Symbolic Logic, 74(4):1121-1142, 2009. URL: https://doi.org/10.2178/JSL/1254748683.
  25. Phokion G. Kolaitis and Swastik Kopparty. Random graphs and the parity quantifier. Journal of the Association for Computing Machinery, 60(5):1-34, October 2013. URL: https://doi.org/10.1145/2528402.
  26. Per Lindström. First order predicate logic with generalized quantifiers. Theoria, 32(3):186-195, 1966. Google Scholar
  27. Per Lindström. On extensions of elementary logic. Theoria, 35(1):1-11, 1969. Google Scholar
  28. M. H. Löb. Meeting of the association for symbolic logic, leeds 1962. The Journal of Symbolic Logic, 27(3):373-382, 1962. First abstract: Plurality-quantification by Nicholas Rescher. URL: https://doi.org/10.1017/S0022481200118742.
  29. Peter Winkler. Random structures and zero-one laws. In Sauer N. W., Woodrow R. E., and Sands B., editors, Finite and Infinite Combinatorics in Sets and Logic, Advanced Science Institutes, pages 399-420. Kluwer Academic Publishers, Dordrecht, 1993. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail