Finite Variable Counting Logics with Restricted Requantification

Authors Simon Raßmann , Georg Schindling , Pascal Schweitzer



PDF
Thumbnail PDF

File

LIPIcs.CSL.2025.14.pdf
  • Filesize: 0.78 MB
  • 23 pages

Document Identifiers

Author Details

Simon Raßmann
  • TU Darmstadt, Germany
Georg Schindling
  • TU Darmstadt, Germany
Pascal Schweitzer
  • TU Darmstadt, Germany

Cite As Get BibTex

Simon Raßmann, Georg Schindling, and Pascal Schweitzer. Finite Variable Counting Logics with Restricted Requantification. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 14:1-14:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.CSL.2025.14

Abstract

Counting logics with a bounded number of variables form one of the central concepts in descriptive complexity theory. Although they restrict the number of variables that a formula can contain, the variables can be nested within scopes of quantified occurrences of themselves. In other words, the variables can be requantified. We study the fragments obtained from counting logics by restricting requantification for some but not necessarily all the variables.
Similar to the logics without limitation on requantification, we develop tools to investigate the restricted variants. Specifically, we introduce a bijective pebble game in which certain pebbles can only be placed once and for all, and a corresponding two-parametric family of Weisfeiler-Leman algorithms. We show close correspondences between the three concepts.
By using a suitable cops-and-robber game and adaptations of the Cai-Fürer-Immerman construction, we completely clarify the relative expressive power of the new logics. 
We show that the restriction of requantification has beneficial algorithmic implications in terms of graph identification. Indeed, we argue that with regard to space complexity, non-requantifiable variables only incur an additive polynomial factor when testing for equivalence. In contrast, for all we know, requantifiable variables incur a multiplicative linear factor.
Finally, we observe that graphs of bounded tree-depth and 3-connected planar graphs can be identified using no, respectively, only a very limited number of requantifiable variables.

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
  • Theory of computation → Complexity theory and logic
Keywords
  • Requantification
  • Finite variable counting logics
  • Weisfeiler-Leman algorithm

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pablo Barceló, Floris Geerts, Juan L. Reutter, and Maksimilian Ryschkov. Graph neural networks with local graph parameters. In Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 25280-25293, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html.
  2. Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL: https://openreview.net/forum?id=dFbKQaRk15w.
  3. Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. Comb., 12(4):389-410, 1992. URL: https://doi.org/10.1007/BF01305232.
  4. Jinzhuan Cai, Jin Guo, Alexander L. Gavrilyuk, and Ilia Ponomarenko. A large family of strongly regular graphs with small Weisfeiler-Leman dimension. arXiv:2312.00460 [math.CO], 2023. arXiv. URL: https://doi.org/10.48550/arXiv.2312.00460.
  5. Bireswar Das, Murali Krishna Enduri, and I. Vinod Reddy. Logspace and FPT algorithms for graph isomorphism for subclasses of bounded tree-width graphs. In M. Sohel Rahman and Etsuji Tomita, editors, WALCOM: Algorithms and Computation - 9th International Workshop, WALCOM 2015, Dhaka, Bangladesh, February 26-28, 2015. Proceedings, volume 8973 of Lecture Notes in Computer Science, pages 329-334. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-15612-5_30.
  6. Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner. Planar graph isomorphism is in log-space. ACM Trans. Comput. Theory, 14(2):8:1-8:33, 2022. URL: https://doi.org/10.1145/3543686.
  7. Anuj Dawar and David Richerby. The power of counting logics on restricted classes of finite structures. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic, pages 84-98, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-540-74915-8_10.
  8. Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1-40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ICALP.2018.40.
  9. Zdenek Dvorák. On recognizing graphs by numbers of homomorphisms. J. Graph Theory, 64(4):330-342, 2010. URL: https://doi.org/10.1002/JGT.20461.
  10. Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of bounded genus in logspace. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 383-392. ACM, 2014. URL: https://doi.org/10.1145/2591796.2591865.
  11. Michael Elberfeld and Pascal Schweitzer. Canonizing graphs of bounded tree width in logspace. ACM Trans. Comput. Theory, 9(3):12:1-12:29, 2017. URL: https://doi.org/10.1145/3132720.
  12. Eva Fluck, Tim Seppelt, and Gian Luca Spitzer. Going deep and going wide: Counting logic and homomorphism indistinguishability over graphs of bounded treedepth and treewidth. In Aniello Murano and Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy, volume 288 of LIPIcs, pages 27:1-27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.CSL.2024.27.
  13. Martin Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 322-333. Springer, 2001. URL: https://doi.org/10.1007/3-540-48224-5_27.
  14. Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM, 59(5):27:1-27:64, 2012. URL: https://doi.org/10.1145/2371656.2371662.
  15. Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory, volume 47 of Lecture Notes in Logic. Cambridge University Press, 2017. URL: https://doi.org/10.1017/9781139028868.
  16. Martin Grohe. Counting bounded tree depth homomorphisms. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 507-520. ACM, 2020. URL: https://doi.org/10.1145/3373718.3394739.
  17. Martin Grohe. The logic of graph neural networks. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-17. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470677.
  18. Martin Grohe and Sandra Kiefer. A linear upper bound on the Weisfeiler-Leman dimension of graphs of bounded genus. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 117:1-117:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ICALP.2019.117.
  19. Martin Grohe, Moritz Lichter, Daniel Neuen, and Pascal Schweitzer. Compressing CFI graphs and lower bounds for the Weisfeiler-Leman refinements. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 798-809. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00052.
  20. Martin Grohe and Daniel Neuen. Canonisation and definability for graphs of bounded rank width. ACM Trans. Comput. Log., 24(1):6:1-6:31, 2023. URL: https://doi.org/10.1145/3568025.
  21. Jin Guo, Alexander L. Gavrilyuk, and Ilia Ponomarenko. On the Weisfeiler-Leman dimension of permutation graphs. arXiv:2305.15861 [math.CO], May 2023. arXiv. URL: https://arxiv.org/abs/2305.15861, URL: https://doi.org/10.48550/arXiv.2305.15861.
  22. Lauri Hella. Logical hierarchies in PTIME. Inf. Comput., 129(1):1-19, 1996. URL: https://doi.org/10.1006/INCO.1996.0070.
  23. Jelle Hellings, Marc Gyssens, Jan Van den Bussche, and Dirk Van Gucht. Expressive completeness of two-variable first-order logic with counting for first-order logic queries on rooted unranked trees. In Proceedings of the 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-13, 2023. URL: https://doi.org/10.1109/LICS56636.2023.10175828.
  24. Neil Immerman. Relational queries computable in polynomial time. Inf. Control., 68(1-3):86-104, 1986. URL: https://doi.org/10.1016/S0019-9958(86)80029-8.
  25. Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0539-5.
  26. Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canonization. Complexity Theory Retrospective, pages 59-81, 1990. URL: https://doi.org/10.1007/978-1-4612-4478-3_5.
  27. Sandra Kiefer. The Weisfeiler-Leman algorithm: an exploration of its power. ACM SIGLOG News, 7(3):5-27, 2020. URL: https://doi.org/10.1145/3436980.3436982.
  28. Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The Weisfeiler-Leman dimension of planar graphs is at most 3. J. ACM, 66(6):44:1-44:31, 2019. URL: https://doi.org/10.1145/3333003.
  29. Haiyan Li, Ilia Ponomarenko, and Peter Zeman. On the Weisfeiler-Leman dimension of some polyhedral graphs. arXiv:2305.17302 [math.CO], May 2023. arXiv. URL: https://doi.org/10.48550/arXiv.2305.17302.
  30. Steven Lindell. A logspace algorithm for tree canonization (extended abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 400-404. ACM, 1992. URL: https://doi.org/10.1145/129712.129750.
  31. Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/f81dee42585b3814de199b2e88757f5c-Abstract.html.
  32. Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb., 27(6):1022-1041, 2006. URL: https://doi.org/10.1016/J.EJC.2005.01.010.
  33. Martin Otto. Bounded Variable Logics and Counting: A Study in Finite Models, volume 9 of Lecture Notes in Logic. Cambridge University Press, 2017. URL: https://doi.org/10.1017/9781316716878.
  34. Oleg Pikhurko and Oleg Verbitsky. Logical complexity of graphs: A survey. In Martin Grohe and Johann A. Makowsky, editors, Model Theoretic Methods in Finite Combinatorics - AMS-ASL Joint Special Session, Washington, DC, USA, January 5-8, 2009, volume 558 of Contemporary Mathematics, pages 129-180. American Mathematical Society, 2009. Google Scholar
  35. Jamie Tucker-Foltz. Inapproximability of unique games in fixed-point logic with counting. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470706.
  36. Steffen van Bergerem. Learning concepts definable in first-order logic with counting. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1-13. IEEE, 2019. URL: https://doi.org/10.1109/LICS.2019.8785811.
  37. Steffen van Bergerem. Descriptive complexity of learning. PhD thesis, RWTH Aachen University, Germany, 2023. URL: https://publications.rwth-aachen.de/record/953243, URL: https://doi.org/10.18154/RWTH-2023-02554.
  38. E. R. van Dam, J. H. Koolen, and H. Tanaka. Distance-regular graphs. Electronic Journal of Combinatorics, 1(DynamicSurveys), 2018. URL: https://doi.org/10.37236/4925.
  39. Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 137-146. ACM, 1982. URL: https://doi.org/10.1145/800070.802186.
  40. Qing Wang, Dillon Ze Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan. N-WL: A new hierarchy of expressivity for graph neural networks. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL: https://openreview.net/pdf?id=5cAI0qXxyv.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail