Minimality in Finite-Dimensional ZW-Calculi

Authors Marc de Visme , Renaud Vilmart



PDF
Thumbnail PDF

File

LIPIcs.CSL.2025.49.pdf
  • Filesize: 0.98 MB
  • 22 pages

Document Identifiers

Author Details

Marc de Visme
  • Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France
Renaud Vilmart
  • Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France

Acknowledgements

The authors would like to thank Antoine Guilmin-Crépon for discussions about the minimality of the present equational theories. The diagrams of the present paper were drawn using the TikZit tool [Aleks Kissinger, 2019].

Cite As Get BibTex

Marc de Visme and Renaud Vilmart. Minimality in Finite-Dimensional ZW-Calculi. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 49:1-49:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.CSL.2025.49

Abstract

The ZW-calculus is a graphical language capable of representing 2-dimensional quantum systems (qubit) through its diagrams, and manipulating them through its equational theory. We extend the formalism to accommodate finite dimensional Hilbert spaces beyond qubit systems. 
First we define a qudit version of the language, where all systems have the same arbitrary finite dimension d, and show that the provided equational theory is both complete - i.e. semantical equivalence is entirely captured by the equations - and minimal - i.e. none of the equations are consequences of the others. We then extend the graphical language further to allow for mixed-dimensional systems. We again show the completeness and minimality of the provided equational theory.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum computation theory
  • Theory of computation → Equational logic and rewriting
  • Theory of computation → Semantics and reasoning
Keywords
  • Quantum Computing
  • Categorical Quantum Mechanics
  • ZW-calculus
  • Qudits
  • Finite Dimensional Hilbert Spaces
  • Completeness
  • Minimality

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., pages 415-425, July 2004. URL: https://doi.org/10.1109/LICS.2004.1319636.
  2. Miriam Backens. The ZX-calculus is complete for stabilizer quantum mechanics. In New Journal of Physics, volume 16, page 093021. IOP Publishing, September 2014. URL: https://doi.org/10.1088/1367-2630/16/9/093021.
  3. Miriam Backens and Aleks Kissinger. ZH: A complete graphical calculus for quantum computations involving classical non-linearity. In Peter Selinger and Giulio Chiribella, editors, rm Proceedings of the 15th International Conference on Quantum Physics and Logic, rm Halifax, Canada, 3-7th June 2018, volume 287 of Electronic Proceedings in Theoretical Computer Science, pages 23-42, 2019. URL: https://doi.org/10.4204/EPTCS.287.2.
  4. Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering, and Sal Wolffs. Completeness of the ZH-calculus. Compositionality, 5, July 2023. URL: https://doi.org/10.32408/compositionality-5-5.
  5. Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John van de Wetering. There and back again: A circuit extraction tale. arXiv: Quantum Physics, 2020. URL: https://arxiv.org/abs/2003.01664.
  6. Miriam Backens, Simon Perdrix, and Quanlong Wang. Towards a Minimal Stabilizer ZX-calculus. Logical Methods in Computer Science, Volume 16, Issue 4, December 2020. URL: https://doi.org/10.23638/LMCS-16(4:19)2020.
  7. Robert I. Booth and Titouan Carette. Complete ZX-Calculi for the Stabiliser Fragment in Odd Prime Dimensions. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1-24:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2022.24.
  8. Robert I. Booth, Titouan Carette, and Cole Comfort. Graphical symplectic algebra, 2024. URL: https://doi.org/10.48550/arXiv.2401.07914.
  9. Titouan Carette. Wielding the ZX-calculus, Flexsymmetry, Mixed States, and Scalable Notations. (Manier le ZX-calcul, flexsymétrie, systèmes ouverts et limandes). PhD thesis, University of Lorraine, Nancy, France, 2021. URL: https://tel.archives-ouvertes.fr/tel-03468027.
  10. Titouan Carette, Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of Graphical Languages for Mixed States Quantum Mechanics. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 108:1-108:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.108.
  11. Titouan Carette, Etienne Moutot, Thomas Perez, and Renaud Vilmart. Compositionality of Planar Perfect Matchings: A Universal and Complete Fragment of ZW-Calculus. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 120:1-120:17, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.120.
  12. Alexandre Clément, Noé Delorme, and Simon Perdrix. Minimal equational theories for quantum circuits, 2023. URL: https://doi.org/10.48550/arXiv.2311.07476.
  13. Bob Coecke and Ross Duncan. Interacting quantum observables: Categorical algebra and diagrammatics. New Journal of Physics, 13(4):043016, April 2011. URL: https://doi.org/10.1088/1367-2630/13/4/043016.
  14. Bob Coecke and Aleks Kissinger. The compositional structure of multipartite quantum entanglement. In Automata, Languages and Programming, pages 297-308. Springer Berlin Heidelberg, 2010. URL: https://doi.org/10.1007/978-3-642-14162-1_25.
  15. Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge, 2017. URL: https://doi.org/10.1017/9781316219317.
  16. Joseph Collins and Ross Duncan. Hopf-frobenius algebras and a simpler drinfeld double. Electronic Proceedings in Theoretical Computer Science, 318:150-180, May 2020. URL: https://doi.org/10.4204/eptcs.318.10.
  17. Niel de Beaudrap and Richard D. P. East. Simple zx and zh calculi for arbitrary finite dimensions, via discrete integrals, 2023. URL: https://arxiv.org/abs/2304.03310.
  18. Niel de Beaudrap and Dominic Horsman. The ZX calculus is a language for surface code lattice surgery. Quantum, 4:218, January 2020. URL: https://doi.org/10.22331/q-2020-01-09-218.
  19. Giovanni de Felice and Bob Coecke. Quantum linear optics via string diagrams. In Stefano Gogioso and Matty Hoban, editors, Proceedings 19th International Conference on Quantum Physics and Logic, QPL 2022, Wolfson College, Oxford, UK, 27 June - 1 July 2022, volume 394 of EPTCS, pages 83-100, 2022. URL: https://doi.org/10.4204/EPTCS.394.6.
  20. Giovanni de Felice, Razin A. Shaikh, Boldizsár Poór, Lia Yeh, Quanlong Wang, and Bob Coecke. Light-matter interaction in the zxw calculus. Electronic Proceedings in Theoretical Computer Science, 384:20-46, August 2023. URL: https://doi.org/10.4204/eptcs.384.2.
  21. Ross Duncan and Kevin Dunne. Interacting frobenius algebras are hopf. In 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-10, 2016. Google Scholar
  22. Ross Duncan and Maxime Lucas. Verifying the Steane code with Quantomatic. In Bob Coecke and Matty Hoban, editors, rm Proceedings of the 10th International Workshop on Quantum Physics and Logic, rm Castelldefels (Barcelona), Spain, 17th to 19th July 2013, volume 171 of Electronic Proceedings in Theoretical Computer Science, pages 33-49. Open Publishing Association, 2014. URL: https://doi.org/10.4204/EPTCS.171.4.
  23. Ross Duncan and Simon Perdrix. Graphs states and the necessity of Euler decomposition. Mathematical Theory and Computational Practice, 5635:167-177, 2009. URL: https://doi.org/10.1007/978-3-642-03073-4.
  24. Amar Hadzihasanovic. A diagrammatic axiomatisation for qubit entanglement. In 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 573-584, July 2015. URL: https://doi.org/10.1109/LICS.2015.59.
  25. Amar Hadzihasanovic. The Algebra of Entanglement and the Geometry of Composition. PhD thesis, University of Oxford, 2017. URL: https://arxiv.org/abs/1709.08086.
  26. Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations of pure-state qubit quantum computing. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '18, pages 502-511, New York, NY, USA, 2018. ACM. URL: https://doi.org/10.1145/3209108.3209128.
  27. Anne Hillebrand. Quantum Protocols involving Multiparticle Entanglement and their Representations. Master’s thesis, University of Oxford, 2011. URL: https://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf.
  28. Jiaxin Huang, Sarah Meng Li, Lia Yeh, Aleks Kissinger, Michele Mosca, and Michael Vasmer. Graphical css code transformation using zx calculus. Electronic Proceedings in Theoretical Computer Science, 384:1-19, August 2023. URL: https://doi.org/10.4204/eptcs.384.1.
  29. Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation of the ZX-calculus for Clifford+T quantum mechanics. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '18, pages 559-568, New York, NY, USA, 2018. ACM. URL: https://doi.org/10.1145/3209108.3209131.
  30. Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Y-calculus: A language for real matrices derived from the zx-calculus. Electronic Proceedings in Theoretical Computer Science, 266:23-57, February 2018. URL: https://doi.org/10.4204/eptcs.266.2.
  31. Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of the ZX-Calculus. Logical Methods in Computer Science, Volume 16, Issue 2, June 2020. URL: https://doi.org/10.23638/LMCS-16(2:11)2020.
  32. Emmanuel Jeandel, Simon Perdrix, Renaud Vilmart, and Quanlong Wang. ZX-calculus: Cyclotomic supplementarity and incompleteness for Clifford+T quantum mechanics. In Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), volume 83 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1-11:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2017.11.
  33. Aleks Kissinger. Tikzit, 2019. URL: https://tikzit.github.io/index.html.
  34. Aleks Kissinger and John van de Wetering. Reducing the number of non-Clifford gates in quantum circuits. Phys. Rev. A, 102:022406, August 2020. URL: https://doi.org/10.1103/PhysRevA.102.022406.
  35. Aleks Kissinger and John van de Wetering. Simulating quantum circuits with zx-calculus reduced stabiliser decompositions. Quantum Science and Technology, 7(4):044001, July 2022. URL: https://doi.org/10.1088/2058-9565/ac5d20.
  36. Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions. In François Le Gall and Tomoyuki Morimae, editors, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022), volume 232 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1-5:13, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.TQC.2022.5.
  37. Mark Koch, Richie Yeung, and Quanlong Wang. Speedy contraction of zx diagrams with triangles via stabiliser decompositions, 2023. URL: https://arxiv.org/abs/2307.01803.
  38. Stephen Lack. Composing PROPs. In Theory and Applications of Categories, volume 13, pages 147-163, 2004. URL: http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html.
  39. Simon Perdrix and Quanlong Wang. Supplementarity is necessary for quantum diagram reasoning. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics (LIPIcs), pages 76:1-76:14, Krakow, Poland, August 2016. URL: https://doi.org/10.4230/LIPIcs.MFCS.2016.76.
  40. Boldizsár Poór, Robert I. Booth, Titouan Carette, John van de Wetering, and Lia Yeh. The qupit stabiliser zx-travaganza: Simplified axioms, normal forms and graph-theoretic simplification. Electronic Proceedings in Theoretical Computer Science, 384:220-264, August 2023. URL: https://doi.org/10.4204/eptcs.384.13.
  41. Boldizsár Poór, Razin A. Shaikh, and Quanlong Wang. Zx-calculus is complete for finite-dimensional hilbert spaces, 2024. URL: https://arxiv.org/abs/2405.10896.
  42. Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie Yeung, and Bob Coecke. Completeness for arbitrary finite dimensions of zxw-calculus, a unifying calculus. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-14, 2023. URL: https://doi.org/10.1109/LICS56636.2023.10175672.
  43. Patrick Roy, John van de Wetering, and Lia Yeh. The qudit zh-calculus: Generalised toffoli+hadamard and universality. Electronic Proceedings in Theoretical Computer Science, 384:142-170, August 2023. URL: https://doi.org/10.4204/eptcs.384.9.
  44. Christian Schröder de Witt and Vladimir Zamdzhiev. The zx-calculus is incomplete for quantum mechanics. Electronic Proceedings in Theoretical Computer Science, 172:285-292, December 2014. URL: https://doi.org/10.4204/eptcs.172.20.
  45. Peter Selinger. A survey of graphical languages for monoidal categories. In New Structures for Physics, pages 289-355. Springer, 2010. Google Scholar
  46. Alex Townsend-Teague, Julio Magdalena de la Fuente, and Markus Kesselring. Floquetifying the colour code. Electronic Proceedings in Theoretical Computer Science, 384:265-303, August 2023. URL: https://doi.org/10.4204/eptcs.384.14.
  47. Renaud Vilmart. A near-minimal axiomatisation of zx-calculus for pure qubit quantum mechanics. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-10, June 2019. URL: https://doi.org/10.1109/LICS.2019.8785765.
  48. Quanlong Wang. Qutrit zx-calculus is complete for stabilizer quantum mechanics. In Bob Coecke and Aleks Kissinger, editors, rm Proceedings 14th International Conference on Quantum Physics and Logic, rm Nijmegen, The Netherlands, 3-7 July 2017, volume 266 of Electronic Proceedings in Theoretical Computer Science, pages 58-70, 2018. URL: https://doi.org/10.4204/EPTCS.266.3.
  49. Quanlong Wang. A non-anyonic qudit zw-calculus, 2021. URL: https://arxiv.org/abs/2109.11285.
  50. Quanlong Wang and Boldizsár Poór. Completeness of qufinite zxw calculus, a graphical language for mixed-dimensional quantum computing, 2023. URL: https://arxiv.org/abs/2309.13014.
  51. Fabio Zanasi. Interacting Hopf Algebras - the theory of linear systems. PhD thesis, Université de Lyon, 2015. URL: http://www.zanasi.com/fabio/#/publications.html.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail